Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach

In NMR experiments, residual dipolar couplings (RDCs) in a molecule can be measured by averaging the dipolar couplings (DCs) over the rotational motion of a molecule in an environment that induces a slight anisotropic orientation distribution of the molecule. Since the shape of the anisotropic distr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-06, Vol.64 (12), p.4781-4801
Hauptverfasser: Pechlaner, Maria, van Gunsteren, Wilfred F., Smith, Lorna J., Stankiewicz, Bartosz, Wirz, Lukas N., Hansen, Niels
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4801
container_issue 12
container_start_page 4781
container_title Journal of chemical information and modeling
container_volume 64
creator Pechlaner, Maria
van Gunsteren, Wilfred F.
Smith, Lorna J.
Stankiewicz, Bartosz
Wirz, Lukas N.
Hansen, Niels
description In NMR experiments, residual dipolar couplings (RDCs) in a molecule can be measured by averaging the dipolar couplings (DCs) over the rotational motion of a molecule in an environment that induces a slight anisotropic orientation distribution of the molecule. Since the shape of the anisotropic distribution cannot be measured, it is standard practice to use a particular orientation distribution of the molecule with respect to the magnetic field, in the form of a so-called alignment tensor (AT), to calculate RDC-values for the molecule. Since the same alignment tensor is commonly used to calculate the different RDCs of a molecule, this approach rests on the assumption that the rotational motion of the molecule is decoupled from its internal motions and that the molecule is rigid. The validity of these two assumptions is investigated for a small, simple molecule, using a relatively rigid atomic interaction function or force field and a more flexible one. By simulating the molecule using an orientation-biasing force an anisotropic rotational distribution can be generated, for which RDCs can be obtained. Using these RDCs as target RDCs when applying one of the two approaches of structure refinement based on RDCs, it can be investigated how well the target RDCs are approximated in the RDC restraining and whether the corresponding nonuniform orientation distribution is reproduced. For the relatively rigid version of the molecule, the AT approach reproduces the target RDC-values, although the nonuniform orientation distribution of the angle θ ab,H between the vector r⃗ ab connecting two atoms a and b in the molecule and the vector representing the direction of the magnetic field H⃗ as generated in the orientation-biasing simulation cannot be reproduced in the AT RDC-restraining simulation. For the relatively flexible version of the molecule, the AT approach fails to reproduce both the target RDC values and the nonuniform orientation distribution. For biomolecules with flexible parts, the application of the AT approach is thus not recommended. Instead, a method based on sampling of the rotational and internal degrees of freedom of the molecule should be applied in molecular structure determination or refinement based on measured RDCs.
doi_str_mv 10.1021/acs.jcim.4c00416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3071504524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3072012052</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-8b83b362cc8ddcfe7345f5f7868d10ef7a57e667edfe8da970288427b41f11783</originalsourceid><addsrcrecordid>eNp1kUuLFDEUhYMozji6dyUBNy6sNkmlKil3bfuEGYSZEdwV6dTNdJpUpSYPxF_jXzX9UhBc3XvDd84hHISeU7KghNE3SsfFVttxwTUhnLYP0DlteFd1Lfn-8LQ3XXuGnsS4JaSuu5Y9Rme1lC0t-zn6deUd6OxUwDcpZJ1yAHwNxk4wwpTwOxVhwH4qb9EOWTn83s5-h698np2d7uJbvCzHOKtgYwG9wWkD-K_vtU8qWT8pV92oca_BV5A2fsA_bNrs6aWzd9MusLqFKfqAl_McvNKbp-iRUS7Cs-O8QN8-frhdfa4uv376slpeVopxkSq5lvW6bpnWchi0AVHzxjRGyFYOlIARqhHQtgIGA3JQnSBMSs7EmlNDqZD1BXp18C2x9xli6kcbNTinJvA59jURtCG8YbygL_9Btz6H8r09xQhlpGGFIgdKBx9jANPPwY4q_Owp6Xfl9aW8fldefyyvSF4cjfN6hOGP4NRWAV4fgL30FPpfv9-XbagM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3072012052</pqid></control><display><type>article</type><title>Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach</title><source>MEDLINE</source><source>American Chemical Society (ACS) Journals</source><creator>Pechlaner, Maria ; van Gunsteren, Wilfred F. ; Smith, Lorna J. ; Stankiewicz, Bartosz ; Wirz, Lukas N. ; Hansen, Niels</creator><creatorcontrib>Pechlaner, Maria ; van Gunsteren, Wilfred F. ; Smith, Lorna J. ; Stankiewicz, Bartosz ; Wirz, Lukas N. ; Hansen, Niels</creatorcontrib><description>In NMR experiments, residual dipolar couplings (RDCs) in a molecule can be measured by averaging the dipolar couplings (DCs) over the rotational motion of a molecule in an environment that induces a slight anisotropic orientation distribution of the molecule. Since the shape of the anisotropic distribution cannot be measured, it is standard practice to use a particular orientation distribution of the molecule with respect to the magnetic field, in the form of a so-called alignment tensor (AT), to calculate RDC-values for the molecule. Since the same alignment tensor is commonly used to calculate the different RDCs of a molecule, this approach rests on the assumption that the rotational motion of the molecule is decoupled from its internal motions and that the molecule is rigid. The validity of these two assumptions is investigated for a small, simple molecule, using a relatively rigid atomic interaction function or force field and a more flexible one. By simulating the molecule using an orientation-biasing force an anisotropic rotational distribution can be generated, for which RDCs can be obtained. Using these RDCs as target RDCs when applying one of the two approaches of structure refinement based on RDCs, it can be investigated how well the target RDCs are approximated in the RDC restraining and whether the corresponding nonuniform orientation distribution is reproduced. For the relatively rigid version of the molecule, the AT approach reproduces the target RDC-values, although the nonuniform orientation distribution of the angle θ ab,H between the vector r⃗ ab connecting two atoms a and b in the molecule and the vector representing the direction of the magnetic field H⃗ as generated in the orientation-biasing simulation cannot be reproduced in the AT RDC-restraining simulation. For the relatively flexible version of the molecule, the AT approach fails to reproduce both the target RDC values and the nonuniform orientation distribution. For biomolecules with flexible parts, the application of the AT approach is thus not recommended. Instead, a method based on sampling of the rotational and internal degrees of freedom of the molecule should be applied in molecular structure determination or refinement based on measured RDCs.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c00416</identifier><identifier>PMID: 38861396</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alignment ; Anisotropy ; Atomic interactions ; Biomolecules ; Computational Biochemistry ; Constraining ; Couplings ; Magnetic fields ; Magnetic Resonance Spectroscopy - methods ; Models, Molecular ; Molecular structure ; NMR ; Nuclear magnetic resonance ; Orientation ; Rotation ; Sampling methods ; Tensors</subject><ispartof>Journal of chemical information and modeling, 2024-06, Vol.64 (12), p.4781-4801</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Jun 24, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a247t-8b83b362cc8ddcfe7345f5f7868d10ef7a57e667edfe8da970288427b41f11783</cites><orcidid>0000-0002-1615-5600 ; 0000-0002-9583-7019 ; 0000-0003-4366-6120 ; 0000-0001-5040-9267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00416$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c00416$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38861396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pechlaner, Maria</creatorcontrib><creatorcontrib>van Gunsteren, Wilfred F.</creatorcontrib><creatorcontrib>Smith, Lorna J.</creatorcontrib><creatorcontrib>Stankiewicz, Bartosz</creatorcontrib><creatorcontrib>Wirz, Lukas N.</creatorcontrib><creatorcontrib>Hansen, Niels</creatorcontrib><title>Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>In NMR experiments, residual dipolar couplings (RDCs) in a molecule can be measured by averaging the dipolar couplings (DCs) over the rotational motion of a molecule in an environment that induces a slight anisotropic orientation distribution of the molecule. Since the shape of the anisotropic distribution cannot be measured, it is standard practice to use a particular orientation distribution of the molecule with respect to the magnetic field, in the form of a so-called alignment tensor (AT), to calculate RDC-values for the molecule. Since the same alignment tensor is commonly used to calculate the different RDCs of a molecule, this approach rests on the assumption that the rotational motion of the molecule is decoupled from its internal motions and that the molecule is rigid. The validity of these two assumptions is investigated for a small, simple molecule, using a relatively rigid atomic interaction function or force field and a more flexible one. By simulating the molecule using an orientation-biasing force an anisotropic rotational distribution can be generated, for which RDCs can be obtained. Using these RDCs as target RDCs when applying one of the two approaches of structure refinement based on RDCs, it can be investigated how well the target RDCs are approximated in the RDC restraining and whether the corresponding nonuniform orientation distribution is reproduced. For the relatively rigid version of the molecule, the AT approach reproduces the target RDC-values, although the nonuniform orientation distribution of the angle θ ab,H between the vector r⃗ ab connecting two atoms a and b in the molecule and the vector representing the direction of the magnetic field H⃗ as generated in the orientation-biasing simulation cannot be reproduced in the AT RDC-restraining simulation. For the relatively flexible version of the molecule, the AT approach fails to reproduce both the target RDC values and the nonuniform orientation distribution. For biomolecules with flexible parts, the application of the AT approach is thus not recommended. Instead, a method based on sampling of the rotational and internal degrees of freedom of the molecule should be applied in molecular structure determination or refinement based on measured RDCs.</description><subject>Alignment</subject><subject>Anisotropy</subject><subject>Atomic interactions</subject><subject>Biomolecules</subject><subject>Computational Biochemistry</subject><subject>Constraining</subject><subject>Couplings</subject><subject>Magnetic fields</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Orientation</subject><subject>Rotation</subject><subject>Sampling methods</subject><subject>Tensors</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUuLFDEUhYMozji6dyUBNy6sNkmlKil3bfuEGYSZEdwV6dTNdJpUpSYPxF_jXzX9UhBc3XvDd84hHISeU7KghNE3SsfFVttxwTUhnLYP0DlteFd1Lfn-8LQ3XXuGnsS4JaSuu5Y9Rme1lC0t-zn6deUd6OxUwDcpZJ1yAHwNxk4wwpTwOxVhwH4qb9EOWTn83s5-h698np2d7uJbvCzHOKtgYwG9wWkD-K_vtU8qWT8pV92oca_BV5A2fsA_bNrs6aWzd9MusLqFKfqAl_McvNKbp-iRUS7Cs-O8QN8-frhdfa4uv376slpeVopxkSq5lvW6bpnWchi0AVHzxjRGyFYOlIARqhHQtgIGA3JQnSBMSs7EmlNDqZD1BXp18C2x9xli6kcbNTinJvA59jURtCG8YbygL_9Btz6H8r09xQhlpGGFIgdKBx9jANPPwY4q_Owp6Xfl9aW8fldefyyvSF4cjfN6hOGP4NRWAV4fgL30FPpfv9-XbagM</recordid><startdate>20240624</startdate><enddate>20240624</enddate><creator>Pechlaner, Maria</creator><creator>van Gunsteren, Wilfred F.</creator><creator>Smith, Lorna J.</creator><creator>Stankiewicz, Bartosz</creator><creator>Wirz, Lukas N.</creator><creator>Hansen, Niels</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1615-5600</orcidid><orcidid>https://orcid.org/0000-0002-9583-7019</orcidid><orcidid>https://orcid.org/0000-0003-4366-6120</orcidid><orcidid>https://orcid.org/0000-0001-5040-9267</orcidid></search><sort><creationdate>20240624</creationdate><title>Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach</title><author>Pechlaner, Maria ; van Gunsteren, Wilfred F. ; Smith, Lorna J. ; Stankiewicz, Bartosz ; Wirz, Lukas N. ; Hansen, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-8b83b362cc8ddcfe7345f5f7868d10ef7a57e667edfe8da970288427b41f11783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Anisotropy</topic><topic>Atomic interactions</topic><topic>Biomolecules</topic><topic>Computational Biochemistry</topic><topic>Constraining</topic><topic>Couplings</topic><topic>Magnetic fields</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Orientation</topic><topic>Rotation</topic><topic>Sampling methods</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pechlaner, Maria</creatorcontrib><creatorcontrib>van Gunsteren, Wilfred F.</creatorcontrib><creatorcontrib>Smith, Lorna J.</creatorcontrib><creatorcontrib>Stankiewicz, Bartosz</creatorcontrib><creatorcontrib>Wirz, Lukas N.</creatorcontrib><creatorcontrib>Hansen, Niels</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pechlaner, Maria</au><au>van Gunsteren, Wilfred F.</au><au>Smith, Lorna J.</au><au>Stankiewicz, Bartosz</au><au>Wirz, Lukas N.</au><au>Hansen, Niels</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-06-24</date><risdate>2024</risdate><volume>64</volume><issue>12</issue><spage>4781</spage><epage>4801</epage><pages>4781-4801</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>In NMR experiments, residual dipolar couplings (RDCs) in a molecule can be measured by averaging the dipolar couplings (DCs) over the rotational motion of a molecule in an environment that induces a slight anisotropic orientation distribution of the molecule. Since the shape of the anisotropic distribution cannot be measured, it is standard practice to use a particular orientation distribution of the molecule with respect to the magnetic field, in the form of a so-called alignment tensor (AT), to calculate RDC-values for the molecule. Since the same alignment tensor is commonly used to calculate the different RDCs of a molecule, this approach rests on the assumption that the rotational motion of the molecule is decoupled from its internal motions and that the molecule is rigid. The validity of these two assumptions is investigated for a small, simple molecule, using a relatively rigid atomic interaction function or force field and a more flexible one. By simulating the molecule using an orientation-biasing force an anisotropic rotational distribution can be generated, for which RDCs can be obtained. Using these RDCs as target RDCs when applying one of the two approaches of structure refinement based on RDCs, it can be investigated how well the target RDCs are approximated in the RDC restraining and whether the corresponding nonuniform orientation distribution is reproduced. For the relatively rigid version of the molecule, the AT approach reproduces the target RDC-values, although the nonuniform orientation distribution of the angle θ ab,H between the vector r⃗ ab connecting two atoms a and b in the molecule and the vector representing the direction of the magnetic field H⃗ as generated in the orientation-biasing simulation cannot be reproduced in the AT RDC-restraining simulation. For the relatively flexible version of the molecule, the AT approach fails to reproduce both the target RDC values and the nonuniform orientation distribution. For biomolecules with flexible parts, the application of the AT approach is thus not recommended. Instead, a method based on sampling of the rotational and internal degrees of freedom of the molecule should be applied in molecular structure determination or refinement based on measured RDCs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38861396</pmid><doi>10.1021/acs.jcim.4c00416</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1615-5600</orcidid><orcidid>https://orcid.org/0000-0002-9583-7019</orcidid><orcidid>https://orcid.org/0000-0003-4366-6120</orcidid><orcidid>https://orcid.org/0000-0001-5040-9267</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2024-06, Vol.64 (12), p.4781-4801
issn 1549-9596
1549-960X
1549-960X
language eng
recordid cdi_proquest_miscellaneous_3071504524
source MEDLINE; American Chemical Society (ACS) Journals
subjects Alignment
Anisotropy
Atomic interactions
Biomolecules
Computational Biochemistry
Constraining
Couplings
Magnetic fields
Magnetic Resonance Spectroscopy - methods
Models, Molecular
Molecular structure
NMR
Nuclear magnetic resonance
Orientation
Rotation
Sampling methods
Tensors
title Molecular Structure Refinement Based on Residual Dipolar Couplings: A Comparison of the Molecular Rotational-Sampling Method with the Alignment-Tensor Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Structure%20Refinement%20Based%20on%20Residual%20Dipolar%20Couplings:%20A%20Comparison%20of%20the%20Molecular%20Rotational-Sampling%20Method%20with%20the%20Alignment-Tensor%20Approach&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Pechlaner,%20Maria&rft.date=2024-06-24&rft.volume=64&rft.issue=12&rft.spage=4781&rft.epage=4801&rft.pages=4781-4801&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c00416&rft_dat=%3Cproquest_cross%3E3072012052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3072012052&rft_id=info:pmid/38861396&rfr_iscdi=true