Architecting O3/P2 layered oxides by gradient Mn doping for sodium-ion batteries
[Display omitted] O3 phase layered oxides are highly attractive cathode materials for sodium-ion batteries because of their high capacity and decent initial Coulombic efficiency. However, their rate capability and long cycling life are unsatisfactory due to the narrow Na+ transfer channel and irreve...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-11, Vol.674, p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Journal of colloid and interface science |
container_volume | 674 |
creator | Wu, Wenbin Zhang, Ping Chen, Siqi Liu, Xiaohong Feng, Guilin Zuo, Meihua Xing, Wangyan Zhang, Bin Fan, Weifeng Zhang, Heng Zhang, Ping Zhang, Jie Xiang, Wei |
description | [Display omitted]
O3 phase layered oxides are highly attractive cathode materials for sodium-ion batteries because of their high capacity and decent initial Coulombic efficiency. However, their rate capability and long cycling life are unsatisfactory due to the narrow Na+ transfer channel and irreversible phase transitions of O3 phase during sodiation/desodiation process. Constructing O3/P2 multiphase structures has been proven to be an effective strategy to overcome these challenges. In this study, we synthesized bi-phasic structured O3/P2 Na(Ni2/9Fe1/3Cu1/9Mn1/3)1-xMnxO2 (x = 0.01, 0.02, 0.03, 0.04, 0.05) materials through Mn doping during sodiation process. Benefiting from surface P2 phase layer with the enhanced Na+ transfer dynamics and high structural stability, the Na(Ni2/9Fe1/3Cu1/9Mn1/3)0.98Mn0.02O2 (NFCM-M2) cathode delivers a reversible capacity of 139.1 mA h g−1 at 0.1 C, and retains 71.4 % of its original capacity after 300 cycles at 1 C. Our work provides useful guidance for designing multiphase cathodes and offers new insights into the structure-performance correlation for sodium-ion cathode materials. |
doi_str_mv | 10.1016/j.jcis.2024.06.136 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3071282662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724013833</els_id><sourcerecordid>3071282662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-f0ad91400232486cbec03b895b3bb224926bde702a4f10a02efd49a3fd26c8fa3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EglL4AwzII0vCtZ06scSCEC8JRAeYLT9uwFUbFztF9N-TqoWR6S7fOTr3I-SMQcmAyctZOXMhlxx4VYIsmZB7ZMRATYqagdgnIwDOClWr-ogc5zwDYGwyUYfkSDQKGpBsRKbXyX2EHl0funf6Ii6nnM7NGhN6Gr-Dx0ztmr4n4wN2PX3uqI_LDdrGRHP0YbUoQuyoNX2PKWA-IQetmWc83d0xebu7fb15KJ5e7h9vrp8Kx0XdFy0Yr1g1LBS8aqSz6EDYRk2ssJbzSnFpPdbATdUyMMCx9ZUyovVcuqY1Ykwutr3LFD9XmHu9CNnhfG46jKusBdSMN1xKPqB8i7oUc07Y6mUKC5PWmoHemNQzvTGpNyY1SD2YHELnu_6VXaD_i_yqG4CrLYDDl18Bk85ucOTQhzTo1D6G__p_AI3hhCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071282662</pqid></control><display><type>article</type><title>Architecting O3/P2 layered oxides by gradient Mn doping for sodium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Wu, Wenbin ; Zhang, Ping ; Chen, Siqi ; Liu, Xiaohong ; Feng, Guilin ; Zuo, Meihua ; Xing, Wangyan ; Zhang, Bin ; Fan, Weifeng ; Zhang, Heng ; Zhang, Ping ; Zhang, Jie ; Xiang, Wei</creator><creatorcontrib>Wu, Wenbin ; Zhang, Ping ; Chen, Siqi ; Liu, Xiaohong ; Feng, Guilin ; Zuo, Meihua ; Xing, Wangyan ; Zhang, Bin ; Fan, Weifeng ; Zhang, Heng ; Zhang, Ping ; Zhang, Jie ; Xiang, Wei</creatorcontrib><description>[Display omitted]
O3 phase layered oxides are highly attractive cathode materials for sodium-ion batteries because of their high capacity and decent initial Coulombic efficiency. However, their rate capability and long cycling life are unsatisfactory due to the narrow Na+ transfer channel and irreversible phase transitions of O3 phase during sodiation/desodiation process. Constructing O3/P2 multiphase structures has been proven to be an effective strategy to overcome these challenges. In this study, we synthesized bi-phasic structured O3/P2 Na(Ni2/9Fe1/3Cu1/9Mn1/3)1-xMnxO2 (x = 0.01, 0.02, 0.03, 0.04, 0.05) materials through Mn doping during sodiation process. Benefiting from surface P2 phase layer with the enhanced Na+ transfer dynamics and high structural stability, the Na(Ni2/9Fe1/3Cu1/9Mn1/3)0.98Mn0.02O2 (NFCM-M2) cathode delivers a reversible capacity of 139.1 mA h g−1 at 0.1 C, and retains 71.4 % of its original capacity after 300 cycles at 1 C. Our work provides useful guidance for designing multiphase cathodes and offers new insights into the structure-performance correlation for sodium-ion cathode materials.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.06.136</identifier><identifier>PMID: 38908061</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Gradient doping ; Layered oxide cathodes ; O3/P2 ; Sodium-ion batteries</subject><ispartof>Journal of colloid and interface science, 2024-11, Vol.674, p.1-8</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-f0ad91400232486cbec03b895b3bb224926bde702a4f10a02efd49a3fd26c8fa3</cites><orcidid>0000-0002-3564-7790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.06.136$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38908061$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Wenbin</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Feng, Guilin</creatorcontrib><creatorcontrib>Zuo, Meihua</creatorcontrib><creatorcontrib>Xing, Wangyan</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Fan, Weifeng</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><title>Architecting O3/P2 layered oxides by gradient Mn doping for sodium-ion batteries</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
O3 phase layered oxides are highly attractive cathode materials for sodium-ion batteries because of their high capacity and decent initial Coulombic efficiency. However, their rate capability and long cycling life are unsatisfactory due to the narrow Na+ transfer channel and irreversible phase transitions of O3 phase during sodiation/desodiation process. Constructing O3/P2 multiphase structures has been proven to be an effective strategy to overcome these challenges. In this study, we synthesized bi-phasic structured O3/P2 Na(Ni2/9Fe1/3Cu1/9Mn1/3)1-xMnxO2 (x = 0.01, 0.02, 0.03, 0.04, 0.05) materials through Mn doping during sodiation process. Benefiting from surface P2 phase layer with the enhanced Na+ transfer dynamics and high structural stability, the Na(Ni2/9Fe1/3Cu1/9Mn1/3)0.98Mn0.02O2 (NFCM-M2) cathode delivers a reversible capacity of 139.1 mA h g−1 at 0.1 C, and retains 71.4 % of its original capacity after 300 cycles at 1 C. Our work provides useful guidance for designing multiphase cathodes and offers new insights into the structure-performance correlation for sodium-ion cathode materials.</description><subject>Gradient doping</subject><subject>Layered oxide cathodes</subject><subject>O3/P2</subject><subject>Sodium-ion batteries</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EglL4AwzII0vCtZ06scSCEC8JRAeYLT9uwFUbFztF9N-TqoWR6S7fOTr3I-SMQcmAyctZOXMhlxx4VYIsmZB7ZMRATYqagdgnIwDOClWr-ogc5zwDYGwyUYfkSDQKGpBsRKbXyX2EHl0funf6Ii6nnM7NGhN6Gr-Dx0ztmr4n4wN2PX3uqI_LDdrGRHP0YbUoQuyoNX2PKWA-IQetmWc83d0xebu7fb15KJ5e7h9vrp8Kx0XdFy0Yr1g1LBS8aqSz6EDYRk2ssJbzSnFpPdbATdUyMMCx9ZUyovVcuqY1Ykwutr3LFD9XmHu9CNnhfG46jKusBdSMN1xKPqB8i7oUc07Y6mUKC5PWmoHemNQzvTGpNyY1SD2YHELnu_6VXaD_i_yqG4CrLYDDl18Bk85ucOTQhzTo1D6G__p_AI3hhCY</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Wu, Wenbin</creator><creator>Zhang, Ping</creator><creator>Chen, Siqi</creator><creator>Liu, Xiaohong</creator><creator>Feng, Guilin</creator><creator>Zuo, Meihua</creator><creator>Xing, Wangyan</creator><creator>Zhang, Bin</creator><creator>Fan, Weifeng</creator><creator>Zhang, Heng</creator><creator>Zhang, Ping</creator><creator>Zhang, Jie</creator><creator>Xiang, Wei</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3564-7790</orcidid></search><sort><creationdate>20241115</creationdate><title>Architecting O3/P2 layered oxides by gradient Mn doping for sodium-ion batteries</title><author>Wu, Wenbin ; Zhang, Ping ; Chen, Siqi ; Liu, Xiaohong ; Feng, Guilin ; Zuo, Meihua ; Xing, Wangyan ; Zhang, Bin ; Fan, Weifeng ; Zhang, Heng ; Zhang, Ping ; Zhang, Jie ; Xiang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-f0ad91400232486cbec03b895b3bb224926bde702a4f10a02efd49a3fd26c8fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gradient doping</topic><topic>Layered oxide cathodes</topic><topic>O3/P2</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wenbin</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Chen, Siqi</creatorcontrib><creatorcontrib>Liu, Xiaohong</creatorcontrib><creatorcontrib>Feng, Guilin</creatorcontrib><creatorcontrib>Zuo, Meihua</creatorcontrib><creatorcontrib>Xing, Wangyan</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Fan, Weifeng</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Zhang, Ping</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wenbin</au><au>Zhang, Ping</au><au>Chen, Siqi</au><au>Liu, Xiaohong</au><au>Feng, Guilin</au><au>Zuo, Meihua</au><au>Xing, Wangyan</au><au>Zhang, Bin</au><au>Fan, Weifeng</au><au>Zhang, Heng</au><au>Zhang, Ping</au><au>Zhang, Jie</au><au>Xiang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecting O3/P2 layered oxides by gradient Mn doping for sodium-ion batteries</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-11-15</date><risdate>2024</risdate><volume>674</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
O3 phase layered oxides are highly attractive cathode materials for sodium-ion batteries because of their high capacity and decent initial Coulombic efficiency. However, their rate capability and long cycling life are unsatisfactory due to the narrow Na+ transfer channel and irreversible phase transitions of O3 phase during sodiation/desodiation process. Constructing O3/P2 multiphase structures has been proven to be an effective strategy to overcome these challenges. In this study, we synthesized bi-phasic structured O3/P2 Na(Ni2/9Fe1/3Cu1/9Mn1/3)1-xMnxO2 (x = 0.01, 0.02, 0.03, 0.04, 0.05) materials through Mn doping during sodiation process. Benefiting from surface P2 phase layer with the enhanced Na+ transfer dynamics and high structural stability, the Na(Ni2/9Fe1/3Cu1/9Mn1/3)0.98Mn0.02O2 (NFCM-M2) cathode delivers a reversible capacity of 139.1 mA h g−1 at 0.1 C, and retains 71.4 % of its original capacity after 300 cycles at 1 C. Our work provides useful guidance for designing multiphase cathodes and offers new insights into the structure-performance correlation for sodium-ion cathode materials.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38908061</pmid><doi>10.1016/j.jcis.2024.06.136</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3564-7790</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2024-11, Vol.674, p.1-8 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3071282662 |
source | Elsevier ScienceDirect Journals |
subjects | Gradient doping Layered oxide cathodes O3/P2 Sodium-ion batteries |
title | Architecting O3/P2 layered oxides by gradient Mn doping for sodium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecting%20O3/P2%20layered%20oxides%20by%20gradient%20Mn%20doping%20for%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wu,%20Wenbin&rft.date=2024-11-15&rft.volume=674&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.06.136&rft_dat=%3Cproquest_cross%3E3071282662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071282662&rft_id=info:pmid/38908061&rft_els_id=S0021979724013833&rfr_iscdi=true |