Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade
This article will provide a perspective review of the most extensively investigated deep learning (DL) applications for musculoskeletal disease detection that have the best potential to translate into routine clinical practice over the next decade. Deep learning methods for detecting fractures, esti...
Gespeichert in:
Veröffentlicht in: | Skeletal radiology 2024-09, Vol.53 (9), p.1849-1868 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1868 |
---|---|
container_issue | 9 |
container_start_page | 1849 |
container_title | Skeletal radiology |
container_volume | 53 |
creator | Ruitenbeek, Huibert C. Oei, Edwin H. G. Visser, Jacob J. Kijowski, Richard |
description | This article will provide a perspective review of the most extensively investigated deep learning (DL) applications for musculoskeletal disease detection that have the best potential to translate into routine clinical practice over the next decade. Deep learning methods for detecting fractures, estimating pediatric bone age, calculating bone measurements such as lower extremity alignment and Cobb angle, and grading osteoarthritis on radiographs have been shown to have high diagnostic performance with many of these applications now commercially available for use in clinical practice. Many studies have also documented the feasibility of using DL methods for detecting joint pathology and characterizing bone tumors on magnetic resonance imaging (MRI). However, musculoskeletal disease detection on MRI is difficult as it requires multi-task, multi-class detection of complex abnormalities on multiple image slices with different tissue contrasts. The generalizability of DL methods for musculoskeletal disease detection on MRI is also challenging due to fluctuations in image quality caused by the wide variety of scanners and pulse sequences used in routine MRI protocols. The diagnostic performance of current DL methods for musculoskeletal disease detection must be further evaluated in well-designed prospective studies using large image datasets acquired at different institutions with different imaging parameters and imaging hardware before they can be fully implemented in clinical practice. Future studies must also investigate the true clinical benefits of current DL methods and determine whether they could enhance quality, reduce error rates, improve workflow, and decrease radiologist fatigue and burnout with all of this weighed against the costs. |
doi_str_mv | 10.1007/s00256-024-04684-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070838902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070838902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-934c1de097cc4e34b4bd5d4322ce9907a8f14a489c1a8408fb461702eb8334533</originalsourceid><addsrcrecordid>eNp9UU1P3DAUtKpWZaH9AxxQpF64pH3-iO30hhAtlZC4wNlynJfF1OsstiOVf4-XpSD10JNtvZl5nhlCjil8pQDqWwZgnWyBiRaE1KKV78iKCs5aRiV9T1bApWgZF_qAHOZ8D0CV6uRHcsB1X1kMVmQ6S8VP3nkbGh8LhuDXGB3WR7NZslvCnH9jwLKbb-zax_X3JqENPhfvGhd89K7O7HYb6qX4OeYdt9xhE_FPaUZ0dsRP5MNkQ8bPL-cRuf1xcXN-2V5d__x1fnbVOq660vZcODoi9Mo5gVwMYhi7sTpiDvselNUTFVbo3lGrBehpEJIqYDhozkXH-RE53etu0_ywYC5m47OrrmzEecmGgwL97L5Cv_wDvZ-XFOvvKkr3ikqpdoJsj3JpzjnhZLap5pAeDQWza8HsWzA1T_PcgpGVdPIivQwbHF8pf2OvAL4H5DqKa0xvu_8j-wQdTZJ5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089716673</pqid></control><display><type>article</type><title>Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade</title><source>Springer Nature - Complete Springer Journals</source><creator>Ruitenbeek, Huibert C. ; Oei, Edwin H. G. ; Visser, Jacob J. ; Kijowski, Richard</creator><creatorcontrib>Ruitenbeek, Huibert C. ; Oei, Edwin H. G. ; Visser, Jacob J. ; Kijowski, Richard</creatorcontrib><description>This article will provide a perspective review of the most extensively investigated deep learning (DL) applications for musculoskeletal disease detection that have the best potential to translate into routine clinical practice over the next decade. Deep learning methods for detecting fractures, estimating pediatric bone age, calculating bone measurements such as lower extremity alignment and Cobb angle, and grading osteoarthritis on radiographs have been shown to have high diagnostic performance with many of these applications now commercially available for use in clinical practice. Many studies have also documented the feasibility of using DL methods for detecting joint pathology and characterizing bone tumors on magnetic resonance imaging (MRI). However, musculoskeletal disease detection on MRI is difficult as it requires multi-task, multi-class detection of complex abnormalities on multiple image slices with different tissue contrasts. The generalizability of DL methods for musculoskeletal disease detection on MRI is also challenging due to fluctuations in image quality caused by the wide variety of scanners and pulse sequences used in routine MRI protocols. The diagnostic performance of current DL methods for musculoskeletal disease detection must be further evaluated in well-designed prospective studies using large image datasets acquired at different institutions with different imaging parameters and imaging hardware before they can be fully implemented in clinical practice. Future studies must also investigate the true clinical benefits of current DL methods and determine whether they could enhance quality, reduce error rates, improve workflow, and decrease radiologist fatigue and burnout with all of this weighed against the costs.</description><identifier>ISSN: 0364-2348</identifier><identifier>ISSN: 1432-2161</identifier><identifier>EISSN: 1432-2161</identifier><identifier>DOI: 10.1007/s00256-024-04684-6</identifier><identifier>PMID: 38902420</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abnormalities ; Artificial intelligence ; Bone cancer ; Bone imaging ; Bone tumors ; Clinical medicine ; Deep learning ; Error analysis ; Error detection ; Feasibility studies ; Fractures ; Image acquisition ; Image enhancement ; Image processing ; Image quality ; Imaging ; Magnetic resonance imaging ; Medical imaging ; Medicine ; Medicine & Public Health ; Musculoskeletal diseases ; Nuclear Medicine ; Orthopedics ; Pathology ; Pediatrics ; Performance evaluation ; Radiology ; Review Article ; Workflow</subject><ispartof>Skeletal radiology, 2024-09, Vol.53 (9), p.1849-1868</ispartof><rights>The Author(s), under exclusive licence to International Skeletal Society (ISS) 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to International Skeletal Society (ISS).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-934c1de097cc4e34b4bd5d4322ce9907a8f14a489c1a8408fb461702eb8334533</citedby><cites>FETCH-LOGICAL-c375t-934c1de097cc4e34b4bd5d4322ce9907a8f14a489c1a8408fb461702eb8334533</cites><orcidid>0009-0005-6967-6273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00256-024-04684-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00256-024-04684-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38902420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruitenbeek, Huibert C.</creatorcontrib><creatorcontrib>Oei, Edwin H. G.</creatorcontrib><creatorcontrib>Visser, Jacob J.</creatorcontrib><creatorcontrib>Kijowski, Richard</creatorcontrib><title>Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade</title><title>Skeletal radiology</title><addtitle>Skeletal Radiol</addtitle><addtitle>Skeletal Radiol</addtitle><description>This article will provide a perspective review of the most extensively investigated deep learning (DL) applications for musculoskeletal disease detection that have the best potential to translate into routine clinical practice over the next decade. Deep learning methods for detecting fractures, estimating pediatric bone age, calculating bone measurements such as lower extremity alignment and Cobb angle, and grading osteoarthritis on radiographs have been shown to have high diagnostic performance with many of these applications now commercially available for use in clinical practice. Many studies have also documented the feasibility of using DL methods for detecting joint pathology and characterizing bone tumors on magnetic resonance imaging (MRI). However, musculoskeletal disease detection on MRI is difficult as it requires multi-task, multi-class detection of complex abnormalities on multiple image slices with different tissue contrasts. The generalizability of DL methods for musculoskeletal disease detection on MRI is also challenging due to fluctuations in image quality caused by the wide variety of scanners and pulse sequences used in routine MRI protocols. The diagnostic performance of current DL methods for musculoskeletal disease detection must be further evaluated in well-designed prospective studies using large image datasets acquired at different institutions with different imaging parameters and imaging hardware before they can be fully implemented in clinical practice. Future studies must also investigate the true clinical benefits of current DL methods and determine whether they could enhance quality, reduce error rates, improve workflow, and decrease radiologist fatigue and burnout with all of this weighed against the costs.</description><subject>Abnormalities</subject><subject>Artificial intelligence</subject><subject>Bone cancer</subject><subject>Bone imaging</subject><subject>Bone tumors</subject><subject>Clinical medicine</subject><subject>Deep learning</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Feasibility studies</subject><subject>Fractures</subject><subject>Image acquisition</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Musculoskeletal diseases</subject><subject>Nuclear Medicine</subject><subject>Orthopedics</subject><subject>Pathology</subject><subject>Pediatrics</subject><subject>Performance evaluation</subject><subject>Radiology</subject><subject>Review Article</subject><subject>Workflow</subject><issn>0364-2348</issn><issn>1432-2161</issn><issn>1432-2161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UU1P3DAUtKpWZaH9AxxQpF64pH3-iO30hhAtlZC4wNlynJfF1OsstiOVf4-XpSD10JNtvZl5nhlCjil8pQDqWwZgnWyBiRaE1KKV78iKCs5aRiV9T1bApWgZF_qAHOZ8D0CV6uRHcsB1X1kMVmQ6S8VP3nkbGh8LhuDXGB3WR7NZslvCnH9jwLKbb-zax_X3JqENPhfvGhd89K7O7HYb6qX4OeYdt9xhE_FPaUZ0dsRP5MNkQ8bPL-cRuf1xcXN-2V5d__x1fnbVOq660vZcODoi9Mo5gVwMYhi7sTpiDvselNUTFVbo3lGrBehpEJIqYDhozkXH-RE53etu0_ywYC5m47OrrmzEecmGgwL97L5Cv_wDvZ-XFOvvKkr3ikqpdoJsj3JpzjnhZLap5pAeDQWza8HsWzA1T_PcgpGVdPIivQwbHF8pf2OvAL4H5DqKa0xvu_8j-wQdTZJ5</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Ruitenbeek, Huibert C.</creator><creator>Oei, Edwin H. G.</creator><creator>Visser, Jacob J.</creator><creator>Kijowski, Richard</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0005-6967-6273</orcidid></search><sort><creationdate>20240901</creationdate><title>Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade</title><author>Ruitenbeek, Huibert C. ; Oei, Edwin H. G. ; Visser, Jacob J. ; Kijowski, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-934c1de097cc4e34b4bd5d4322ce9907a8f14a489c1a8408fb461702eb8334533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abnormalities</topic><topic>Artificial intelligence</topic><topic>Bone cancer</topic><topic>Bone imaging</topic><topic>Bone tumors</topic><topic>Clinical medicine</topic><topic>Deep learning</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Feasibility studies</topic><topic>Fractures</topic><topic>Image acquisition</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Musculoskeletal diseases</topic><topic>Nuclear Medicine</topic><topic>Orthopedics</topic><topic>Pathology</topic><topic>Pediatrics</topic><topic>Performance evaluation</topic><topic>Radiology</topic><topic>Review Article</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruitenbeek, Huibert C.</creatorcontrib><creatorcontrib>Oei, Edwin H. G.</creatorcontrib><creatorcontrib>Visser, Jacob J.</creatorcontrib><creatorcontrib>Kijowski, Richard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Skeletal radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruitenbeek, Huibert C.</au><au>Oei, Edwin H. G.</au><au>Visser, Jacob J.</au><au>Kijowski, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade</atitle><jtitle>Skeletal radiology</jtitle><stitle>Skeletal Radiol</stitle><addtitle>Skeletal Radiol</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>53</volume><issue>9</issue><spage>1849</spage><epage>1868</epage><pages>1849-1868</pages><issn>0364-2348</issn><issn>1432-2161</issn><eissn>1432-2161</eissn><abstract>This article will provide a perspective review of the most extensively investigated deep learning (DL) applications for musculoskeletal disease detection that have the best potential to translate into routine clinical practice over the next decade. Deep learning methods for detecting fractures, estimating pediatric bone age, calculating bone measurements such as lower extremity alignment and Cobb angle, and grading osteoarthritis on radiographs have been shown to have high diagnostic performance with many of these applications now commercially available for use in clinical practice. Many studies have also documented the feasibility of using DL methods for detecting joint pathology and characterizing bone tumors on magnetic resonance imaging (MRI). However, musculoskeletal disease detection on MRI is difficult as it requires multi-task, multi-class detection of complex abnormalities on multiple image slices with different tissue contrasts. The generalizability of DL methods for musculoskeletal disease detection on MRI is also challenging due to fluctuations in image quality caused by the wide variety of scanners and pulse sequences used in routine MRI protocols. The diagnostic performance of current DL methods for musculoskeletal disease detection must be further evaluated in well-designed prospective studies using large image datasets acquired at different institutions with different imaging parameters and imaging hardware before they can be fully implemented in clinical practice. Future studies must also investigate the true clinical benefits of current DL methods and determine whether they could enhance quality, reduce error rates, improve workflow, and decrease radiologist fatigue and burnout with all of this weighed against the costs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38902420</pmid><doi>10.1007/s00256-024-04684-6</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0005-6967-6273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-2348 |
ispartof | Skeletal radiology, 2024-09, Vol.53 (9), p.1849-1868 |
issn | 0364-2348 1432-2161 1432-2161 |
language | eng |
recordid | cdi_proquest_miscellaneous_3070838902 |
source | Springer Nature - Complete Springer Journals |
subjects | Abnormalities Artificial intelligence Bone cancer Bone imaging Bone tumors Clinical medicine Deep learning Error analysis Error detection Feasibility studies Fractures Image acquisition Image enhancement Image processing Image quality Imaging Magnetic resonance imaging Medical imaging Medicine Medicine & Public Health Musculoskeletal diseases Nuclear Medicine Orthopedics Pathology Pediatrics Performance evaluation Radiology Review Article Workflow |
title | Artificial intelligence in musculoskeletal imaging: realistic clinical applications in the next decade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A31%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20in%20musculoskeletal%20imaging:%20realistic%20clinical%20applications%20in%20the%20next%20decade&rft.jtitle=Skeletal%20radiology&rft.au=Ruitenbeek,%20Huibert%20C.&rft.date=2024-09-01&rft.volume=53&rft.issue=9&rft.spage=1849&rft.epage=1868&rft.pages=1849-1868&rft.issn=0364-2348&rft.eissn=1432-2161&rft_id=info:doi/10.1007/s00256-024-04684-6&rft_dat=%3Cproquest_cross%3E3070838902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089716673&rft_id=info:pmid/38902420&rfr_iscdi=true |