Enhanced Thermoelectric Performance in Vacancy‐Filling Heuslers due to Kondo‐Like Effect

To improve thermoelectric efficiency, various tactics have been employed with considerable success to decouple intertwined material attributes. However, the integration of magnetism, derived from the unique spin characteristic that other methods cannot replicate, has been comparatively underexplored...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (33), p.e2405858-n/a
Hauptverfasser: Chen, Jiajun, Dong, Zirui, Li, Qizhu, Ge, Binghui, Zhang, Jiye, Zhang, Yubo, Luo, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e2405858
container_title Advanced materials (Weinheim)
container_volume 36
creator Chen, Jiajun
Dong, Zirui
Li, Qizhu
Ge, Binghui
Zhang, Jiye
Zhang, Yubo
Luo, Jun
description To improve thermoelectric efficiency, various tactics have been employed with considerable success to decouple intertwined material attributes. However, the integration of magnetism, derived from the unique spin characteristic that other methods cannot replicate, has been comparatively underexplored and presents an ongoing intellectual challenge. A previous research has shown that vacancy‐filling Heuslers offer a highly adaptable framework for modulating thermoelectric properties. Here, it is demonstrated how intrinsic magnetic‐electrical‐thermal coupling can enhance the thermoelectric performance of vacancy‐filling Heusler alloys. The materials, Nb0.75Ti0.25FeCrxSb with 0 ≤ x ≤ 0.1, feature a fraction of magnetic Cr ions that randomly occupy the vacancy sites of the Nb0.75Ti0.25FeSb half‐Heusler matrix. These alloys achieve a remarkable thermoelectric figure of merit (zT) of 1.21 at 973 K, owing to increased Seebeck coefficient and decreased thermal conductivity. The mechanism is primarily due to the introduction of magnetism, which increases the density‐of‐states effective mass (reaching levels up to 15 times that of a free electron's mass) and simultaneously reduces the electronic thermal conductivity. Mass and strain‐field fluctuations further reduce the lattice thermal conductivity. Even higher zT values can potentially be achieved by carefully balancing electron mobility and effective mass. This work underscores the substantial prospects for exploiting magnetic‐electrical‐thermal synergies in cutting‐edge thermoelectric materials. This work demonstrate that intrinsic magnetic‐electrical‐thermal coupling can enhance the thermoelectric performance. The vacancy‐filling Heusler alloy Nb0.75Ti0.25FeCrxSb shows a Kondo‐like effect, which not only increases the effective mass but also reduces the thermal conductivity. As a result, a remarkable thermoelectric figure of merit (zT) of 1.21 is achieved at 973 K in Nb0.75Ti0.25FeCr0.1Sb.
doi_str_mv 10.1002/adma.202405858
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070827208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070827208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2588-835acf744a0287a0b0c11d364dbade48552ac6cdd77d6f887db97b2efae739853</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhq2qqGxprxwrS71wyTJ27Ng-ruhSqi5qD7SnSpFjTyCQxNTeCO2tj9Bn5EnwaoFKXHqakf5vPo1-Qg4ZzBkAP7Z-sHMOXIDUUr8iMyY5KwQY-ZrMwJSyMJXQ--RtStcAYCqo3pD9UmtjpBYz8ms5XtnRoacXVxiHgD26dewc_Y6xDXHYZrQb6U_r8rq5__P3tOv7brykZzilHmOifkK6DvRrGH3I-aq7Qbps2-x5R_Za2yd8_zgPyI_T5cXJWbH69vnLyWJVOC61LnQprWuVEBa4VhYacIz5shK-sR6FlpJbVznvlfJVq7XyjVENx9aiKo2W5QE52nlvY_g9YVrXQ5cc9r0dMUypLkGB5oqDzujHF-h1mOKYv8uUKUEYJlmm5jvKxZBSxLa-jd1g46ZmUG97r7e918-954MPj9qpGdA_409FZ8DsgLuux81_dPXi0_nin_wBQauQxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093049151</pqid></control><display><type>article</type><title>Enhanced Thermoelectric Performance in Vacancy‐Filling Heuslers due to Kondo‐Like Effect</title><source>Wiley Online Library All Journals</source><creator>Chen, Jiajun ; Dong, Zirui ; Li, Qizhu ; Ge, Binghui ; Zhang, Jiye ; Zhang, Yubo ; Luo, Jun</creator><creatorcontrib>Chen, Jiajun ; Dong, Zirui ; Li, Qizhu ; Ge, Binghui ; Zhang, Jiye ; Zhang, Yubo ; Luo, Jun</creatorcontrib><description>To improve thermoelectric efficiency, various tactics have been employed with considerable success to decouple intertwined material attributes. However, the integration of magnetism, derived from the unique spin characteristic that other methods cannot replicate, has been comparatively underexplored and presents an ongoing intellectual challenge. A previous research has shown that vacancy‐filling Heuslers offer a highly adaptable framework for modulating thermoelectric properties. Here, it is demonstrated how intrinsic magnetic‐electrical‐thermal coupling can enhance the thermoelectric performance of vacancy‐filling Heusler alloys. The materials, Nb0.75Ti0.25FeCrxSb with 0 ≤ x ≤ 0.1, feature a fraction of magnetic Cr ions that randomly occupy the vacancy sites of the Nb0.75Ti0.25FeSb half‐Heusler matrix. These alloys achieve a remarkable thermoelectric figure of merit (zT) of 1.21 at 973 K, owing to increased Seebeck coefficient and decreased thermal conductivity. The mechanism is primarily due to the introduction of magnetism, which increases the density‐of‐states effective mass (reaching levels up to 15 times that of a free electron's mass) and simultaneously reduces the electronic thermal conductivity. Mass and strain‐field fluctuations further reduce the lattice thermal conductivity. Even higher zT values can potentially be achieved by carefully balancing electron mobility and effective mass. This work underscores the substantial prospects for exploiting magnetic‐electrical‐thermal synergies in cutting‐edge thermoelectric materials. This work demonstrate that intrinsic magnetic‐electrical‐thermal coupling can enhance the thermoelectric performance. The vacancy‐filling Heusler alloy Nb0.75Ti0.25FeCrxSb shows a Kondo‐like effect, which not only increases the effective mass but also reduces the thermal conductivity. As a result, a remarkable thermoelectric figure of merit (zT) of 1.21 is achieved at 973 K in Nb0.75Ti0.25FeCr0.1Sb.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202405858</identifier><identifier>PMID: 38899584</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>density‐of‐states effective mass ; Electrical resistivity ; Electron mobility ; Figure of merit ; Free electrons ; Heat conductivity ; Heat transfer ; Heusler alloys ; Kondo‐like effect ; Magnetic properties ; Magnetism ; Seebeck effect ; Thermal conductivity ; Thermal coupling ; Thermoelectric materials ; vacancy‐filling Heusler</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2405858-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2588-835acf744a0287a0b0c11d364dbade48552ac6cdd77d6f887db97b2efae739853</cites><orcidid>0000-0002-8235-2338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202405858$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202405858$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38899584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Dong, Zirui</creatorcontrib><creatorcontrib>Li, Qizhu</creatorcontrib><creatorcontrib>Ge, Binghui</creatorcontrib><creatorcontrib>Zhang, Jiye</creatorcontrib><creatorcontrib>Zhang, Yubo</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><title>Enhanced Thermoelectric Performance in Vacancy‐Filling Heuslers due to Kondo‐Like Effect</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>To improve thermoelectric efficiency, various tactics have been employed with considerable success to decouple intertwined material attributes. However, the integration of magnetism, derived from the unique spin characteristic that other methods cannot replicate, has been comparatively underexplored and presents an ongoing intellectual challenge. A previous research has shown that vacancy‐filling Heuslers offer a highly adaptable framework for modulating thermoelectric properties. Here, it is demonstrated how intrinsic magnetic‐electrical‐thermal coupling can enhance the thermoelectric performance of vacancy‐filling Heusler alloys. The materials, Nb0.75Ti0.25FeCrxSb with 0 ≤ x ≤ 0.1, feature a fraction of magnetic Cr ions that randomly occupy the vacancy sites of the Nb0.75Ti0.25FeSb half‐Heusler matrix. These alloys achieve a remarkable thermoelectric figure of merit (zT) of 1.21 at 973 K, owing to increased Seebeck coefficient and decreased thermal conductivity. The mechanism is primarily due to the introduction of magnetism, which increases the density‐of‐states effective mass (reaching levels up to 15 times that of a free electron's mass) and simultaneously reduces the electronic thermal conductivity. Mass and strain‐field fluctuations further reduce the lattice thermal conductivity. Even higher zT values can potentially be achieved by carefully balancing electron mobility and effective mass. This work underscores the substantial prospects for exploiting magnetic‐electrical‐thermal synergies in cutting‐edge thermoelectric materials. This work demonstrate that intrinsic magnetic‐electrical‐thermal coupling can enhance the thermoelectric performance. The vacancy‐filling Heusler alloy Nb0.75Ti0.25FeCrxSb shows a Kondo‐like effect, which not only increases the effective mass but also reduces the thermal conductivity. As a result, a remarkable thermoelectric figure of merit (zT) of 1.21 is achieved at 973 K in Nb0.75Ti0.25FeCr0.1Sb.</description><subject>density‐of‐states effective mass</subject><subject>Electrical resistivity</subject><subject>Electron mobility</subject><subject>Figure of merit</subject><subject>Free electrons</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heusler alloys</subject><subject>Kondo‐like effect</subject><subject>Magnetic properties</subject><subject>Magnetism</subject><subject>Seebeck effect</subject><subject>Thermal conductivity</subject><subject>Thermal coupling</subject><subject>Thermoelectric materials</subject><subject>vacancy‐filling Heusler</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhq2qqGxprxwrS71wyTJ27Ng-ruhSqi5qD7SnSpFjTyCQxNTeCO2tj9Bn5EnwaoFKXHqakf5vPo1-Qg4ZzBkAP7Z-sHMOXIDUUr8iMyY5KwQY-ZrMwJSyMJXQ--RtStcAYCqo3pD9UmtjpBYz8ms5XtnRoacXVxiHgD26dewc_Y6xDXHYZrQb6U_r8rq5__P3tOv7brykZzilHmOifkK6DvRrGH3I-aq7Qbps2-x5R_Za2yd8_zgPyI_T5cXJWbH69vnLyWJVOC61LnQprWuVEBa4VhYacIz5shK-sR6FlpJbVznvlfJVq7XyjVENx9aiKo2W5QE52nlvY_g9YVrXQ5cc9r0dMUypLkGB5oqDzujHF-h1mOKYv8uUKUEYJlmm5jvKxZBSxLa-jd1g46ZmUG97r7e918-954MPj9qpGdA_409FZ8DsgLuux81_dPXi0_nin_wBQauQxw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Chen, Jiajun</creator><creator>Dong, Zirui</creator><creator>Li, Qizhu</creator><creator>Ge, Binghui</creator><creator>Zhang, Jiye</creator><creator>Zhang, Yubo</creator><creator>Luo, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8235-2338</orcidid></search><sort><creationdate>20240801</creationdate><title>Enhanced Thermoelectric Performance in Vacancy‐Filling Heuslers due to Kondo‐Like Effect</title><author>Chen, Jiajun ; Dong, Zirui ; Li, Qizhu ; Ge, Binghui ; Zhang, Jiye ; Zhang, Yubo ; Luo, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2588-835acf744a0287a0b0c11d364dbade48552ac6cdd77d6f887db97b2efae739853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>density‐of‐states effective mass</topic><topic>Electrical resistivity</topic><topic>Electron mobility</topic><topic>Figure of merit</topic><topic>Free electrons</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heusler alloys</topic><topic>Kondo‐like effect</topic><topic>Magnetic properties</topic><topic>Magnetism</topic><topic>Seebeck effect</topic><topic>Thermal conductivity</topic><topic>Thermal coupling</topic><topic>Thermoelectric materials</topic><topic>vacancy‐filling Heusler</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Dong, Zirui</creatorcontrib><creatorcontrib>Li, Qizhu</creatorcontrib><creatorcontrib>Ge, Binghui</creatorcontrib><creatorcontrib>Zhang, Jiye</creatorcontrib><creatorcontrib>Zhang, Yubo</creatorcontrib><creatorcontrib>Luo, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiajun</au><au>Dong, Zirui</au><au>Li, Qizhu</au><au>Ge, Binghui</au><au>Zhang, Jiye</au><au>Zhang, Yubo</au><au>Luo, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Thermoelectric Performance in Vacancy‐Filling Heuslers due to Kondo‐Like Effect</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>33</issue><spage>e2405858</spage><epage>n/a</epage><pages>e2405858-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>To improve thermoelectric efficiency, various tactics have been employed with considerable success to decouple intertwined material attributes. However, the integration of magnetism, derived from the unique spin characteristic that other methods cannot replicate, has been comparatively underexplored and presents an ongoing intellectual challenge. A previous research has shown that vacancy‐filling Heuslers offer a highly adaptable framework for modulating thermoelectric properties. Here, it is demonstrated how intrinsic magnetic‐electrical‐thermal coupling can enhance the thermoelectric performance of vacancy‐filling Heusler alloys. The materials, Nb0.75Ti0.25FeCrxSb with 0 ≤ x ≤ 0.1, feature a fraction of magnetic Cr ions that randomly occupy the vacancy sites of the Nb0.75Ti0.25FeSb half‐Heusler matrix. These alloys achieve a remarkable thermoelectric figure of merit (zT) of 1.21 at 973 K, owing to increased Seebeck coefficient and decreased thermal conductivity. The mechanism is primarily due to the introduction of magnetism, which increases the density‐of‐states effective mass (reaching levels up to 15 times that of a free electron's mass) and simultaneously reduces the electronic thermal conductivity. Mass and strain‐field fluctuations further reduce the lattice thermal conductivity. Even higher zT values can potentially be achieved by carefully balancing electron mobility and effective mass. This work underscores the substantial prospects for exploiting magnetic‐electrical‐thermal synergies in cutting‐edge thermoelectric materials. This work demonstrate that intrinsic magnetic‐electrical‐thermal coupling can enhance the thermoelectric performance. The vacancy‐filling Heusler alloy Nb0.75Ti0.25FeCrxSb shows a Kondo‐like effect, which not only increases the effective mass but also reduces the thermal conductivity. As a result, a remarkable thermoelectric figure of merit (zT) of 1.21 is achieved at 973 K in Nb0.75Ti0.25FeCr0.1Sb.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38899584</pmid><doi>10.1002/adma.202405858</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8235-2338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2405858-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3070827208
source Wiley Online Library All Journals
subjects density‐of‐states effective mass
Electrical resistivity
Electron mobility
Figure of merit
Free electrons
Heat conductivity
Heat transfer
Heusler alloys
Kondo‐like effect
Magnetic properties
Magnetism
Seebeck effect
Thermal conductivity
Thermal coupling
Thermoelectric materials
vacancy‐filling Heusler
title Enhanced Thermoelectric Performance in Vacancy‐Filling Heuslers due to Kondo‐Like Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Thermoelectric%20Performance%20in%20Vacancy%E2%80%90Filling%20Heuslers%20due%20to%20Kondo%E2%80%90Like%20Effect&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Jiajun&rft.date=2024-08-01&rft.volume=36&rft.issue=33&rft.spage=e2405858&rft.epage=n/a&rft.pages=e2405858-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202405858&rft_dat=%3Cproquest_cross%3E3070827208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093049151&rft_id=info:pmid/38899584&rfr_iscdi=true