Spectroscopic and Interferometric Sum‐Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces

Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near‐field optical microscopy and far‐field reflection spectros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (33), p.e2312507-n/a
Hauptverfasser: Niemann, Richarda, Mueller, Niclas S., Wasserroth, Sören, Lu, Guanyu, Wolf, Martin, Caldwell, Joshua D., Paarmann, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e2312507
container_title Advanced materials (Weinheim)
container_volume 36
creator Niemann, Richarda
Mueller, Niclas S.
Wasserroth, Sören
Lu, Guanyu
Wolf, Martin
Caldwell, Joshua D.
Paarmann, Alexander
description Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near‐field optical microscopy and far‐field reflection spectroscopy. Here, infrared‐visible sum‐frequency spectro‐microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub‐wavelength spatial resolution and highly‐resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide‐field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro‐microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle‐dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non‐perturbative tool to image polariton hybridization and propagation. A non‐linear technique of infrared + visible sum‐frequency spectro‐microscopy is introduced to image phonon polaritons in SiC metasurfaces. This approach allows for access to both the spatial propagation and spectral dispersion of the polaritons with sub‐wavelength spatial resolution. The hybridization and strong coupling of propagating (SPhP) and localized (LSPhP) phonon polaritons and the activation of polaritonic edge states are observed.
doi_str_mv 10.1002/adma.202312507
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070803722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093051810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2987-cc4ca32486b7244b01ae89b5620b44356f6f3c9719c2d432d091cb5f77ae0fe23</originalsourceid><addsrcrecordid>eNqFkU-L1EAQxRtR3HH16lEavHjJWP0vSR-H0dWBXVwYPYdOp3rMknTH7gSZmx_Bz-gnsYdZV_DioSgofu9RvEfISwZrBsDfmm40aw5cMK6gekRWTHFWSNDqMVmBFqrQpawvyLOU7gBAl1A-JReirrXKsyJpP6GdY0g2TL2lxnd052eMDmMYcY75tl_GXz9-XkX8tqC3R7obzaH3Bxoc3WelPwxHug3LNGBHb78GHzy9DYOJ_Rx8or2n-35Lb3A2aYnOWEzPyRNnhoQv7vcl-XL1_vP2Y3H96cNuu7kuLNd1VVgrrRFc1mVbcSlbYAZr3aqSQyulUKUrnbC6YtryTgregWa2Va6qDIJDLi7Jm7PvFEP-Pc3N2CeLw2A8hiU1AiqoQVT8hL7-B70LS_T5u0xpAYrVDDK1PlM2B5YiumaK_WjisWHQnOpoTnU0D3Vkwat726UdsXvA_-SfAX0GvvcDHv9j12ze3Wz-mv8GFlCYLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093051810</pqid></control><display><type>article</type><title>Spectroscopic and Interferometric Sum‐Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces</title><source>Wiley Online Library All Journals</source><creator>Niemann, Richarda ; Mueller, Niclas S. ; Wasserroth, Sören ; Lu, Guanyu ; Wolf, Martin ; Caldwell, Joshua D. ; Paarmann, Alexander</creator><creatorcontrib>Niemann, Richarda ; Mueller, Niclas S. ; Wasserroth, Sören ; Lu, Guanyu ; Wolf, Martin ; Caldwell, Joshua D. ; Paarmann, Alexander</creatorcontrib><description>Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near‐field optical microscopy and far‐field reflection spectroscopy. Here, infrared‐visible sum‐frequency spectro‐microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub‐wavelength spatial resolution and highly‐resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide‐field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro‐microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle‐dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non‐perturbative tool to image polariton hybridization and propagation. A non‐linear technique of infrared + visible sum‐frequency spectro‐microscopy is introduced to image phonon polaritons in SiC metasurfaces. This approach allows for access to both the spatial propagation and spectral dispersion of the polaritons with sub‐wavelength spatial resolution. The hybridization and strong coupling of propagating (SPhP) and localized (LSPhP) phonon polaritons and the activation of polaritonic edge states are observed.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202312507</identifier><identifier>PMID: 38895889</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Coupling ; Excitation spectra ; Infrared imagery ; Infrared imaging ; Infrared lasers ; Infrared reflection ; Infrared spectroscopy ; Interferometry ; Light reflection ; Localization ; metasurface ; Metasurfaces ; Microscopy ; nonlinear ; Optical microscopy ; phonon polariton ; Phonons ; polariton interferometry ; Polaritons ; Propagation ; Resonance ; Spatial resolution ; strong coupling ; sum‐frequency generation ; Tunable lasers ; Wave propagation</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2312507-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2987-cc4ca32486b7244b01ae89b5620b44356f6f3c9719c2d432d091cb5f77ae0fe23</cites><orcidid>0000-0002-8271-2284 ; 0000-0002-8688-1974 ; 0000-0003-4935-7062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202312507$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202312507$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38895889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niemann, Richarda</creatorcontrib><creatorcontrib>Mueller, Niclas S.</creatorcontrib><creatorcontrib>Wasserroth, Sören</creatorcontrib><creatorcontrib>Lu, Guanyu</creatorcontrib><creatorcontrib>Wolf, Martin</creatorcontrib><creatorcontrib>Caldwell, Joshua D.</creatorcontrib><creatorcontrib>Paarmann, Alexander</creatorcontrib><title>Spectroscopic and Interferometric Sum‐Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near‐field optical microscopy and far‐field reflection spectroscopy. Here, infrared‐visible sum‐frequency spectro‐microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub‐wavelength spatial resolution and highly‐resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide‐field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro‐microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle‐dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non‐perturbative tool to image polariton hybridization and propagation. A non‐linear technique of infrared + visible sum‐frequency spectro‐microscopy is introduced to image phonon polaritons in SiC metasurfaces. This approach allows for access to both the spatial propagation and spectral dispersion of the polaritons with sub‐wavelength spatial resolution. The hybridization and strong coupling of propagating (SPhP) and localized (LSPhP) phonon polaritons and the activation of polaritonic edge states are observed.</description><subject>Coupling</subject><subject>Excitation spectra</subject><subject>Infrared imagery</subject><subject>Infrared imaging</subject><subject>Infrared lasers</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>Interferometry</subject><subject>Light reflection</subject><subject>Localization</subject><subject>metasurface</subject><subject>Metasurfaces</subject><subject>Microscopy</subject><subject>nonlinear</subject><subject>Optical microscopy</subject><subject>phonon polariton</subject><subject>Phonons</subject><subject>polariton interferometry</subject><subject>Polaritons</subject><subject>Propagation</subject><subject>Resonance</subject><subject>Spatial resolution</subject><subject>strong coupling</subject><subject>sum‐frequency generation</subject><subject>Tunable lasers</subject><subject>Wave propagation</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkU-L1EAQxRtR3HH16lEavHjJWP0vSR-H0dWBXVwYPYdOp3rMknTH7gSZmx_Bz-gnsYdZV_DioSgofu9RvEfISwZrBsDfmm40aw5cMK6gekRWTHFWSNDqMVmBFqrQpawvyLOU7gBAl1A-JReirrXKsyJpP6GdY0g2TL2lxnd052eMDmMYcY75tl_GXz9-XkX8tqC3R7obzaH3Bxoc3WelPwxHug3LNGBHb78GHzy9DYOJ_Rx8or2n-35Lb3A2aYnOWEzPyRNnhoQv7vcl-XL1_vP2Y3H96cNuu7kuLNd1VVgrrRFc1mVbcSlbYAZr3aqSQyulUKUrnbC6YtryTgregWa2Va6qDIJDLi7Jm7PvFEP-Pc3N2CeLw2A8hiU1AiqoQVT8hL7-B70LS_T5u0xpAYrVDDK1PlM2B5YiumaK_WjisWHQnOpoTnU0D3Vkwat726UdsXvA_-SfAX0GvvcDHv9j12ze3Wz-mv8GFlCYLg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Niemann, Richarda</creator><creator>Mueller, Niclas S.</creator><creator>Wasserroth, Sören</creator><creator>Lu, Guanyu</creator><creator>Wolf, Martin</creator><creator>Caldwell, Joshua D.</creator><creator>Paarmann, Alexander</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8271-2284</orcidid><orcidid>https://orcid.org/0000-0002-8688-1974</orcidid><orcidid>https://orcid.org/0000-0003-4935-7062</orcidid></search><sort><creationdate>20240801</creationdate><title>Spectroscopic and Interferometric Sum‐Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces</title><author>Niemann, Richarda ; Mueller, Niclas S. ; Wasserroth, Sören ; Lu, Guanyu ; Wolf, Martin ; Caldwell, Joshua D. ; Paarmann, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2987-cc4ca32486b7244b01ae89b5620b44356f6f3c9719c2d432d091cb5f77ae0fe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coupling</topic><topic>Excitation spectra</topic><topic>Infrared imagery</topic><topic>Infrared imaging</topic><topic>Infrared lasers</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>Interferometry</topic><topic>Light reflection</topic><topic>Localization</topic><topic>metasurface</topic><topic>Metasurfaces</topic><topic>Microscopy</topic><topic>nonlinear</topic><topic>Optical microscopy</topic><topic>phonon polariton</topic><topic>Phonons</topic><topic>polariton interferometry</topic><topic>Polaritons</topic><topic>Propagation</topic><topic>Resonance</topic><topic>Spatial resolution</topic><topic>strong coupling</topic><topic>sum‐frequency generation</topic><topic>Tunable lasers</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niemann, Richarda</creatorcontrib><creatorcontrib>Mueller, Niclas S.</creatorcontrib><creatorcontrib>Wasserroth, Sören</creatorcontrib><creatorcontrib>Lu, Guanyu</creatorcontrib><creatorcontrib>Wolf, Martin</creatorcontrib><creatorcontrib>Caldwell, Joshua D.</creatorcontrib><creatorcontrib>Paarmann, Alexander</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niemann, Richarda</au><au>Mueller, Niclas S.</au><au>Wasserroth, Sören</au><au>Lu, Guanyu</au><au>Wolf, Martin</au><au>Caldwell, Joshua D.</au><au>Paarmann, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectroscopic and Interferometric Sum‐Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>33</issue><spage>e2312507</spage><epage>n/a</epage><pages>e2312507-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near‐field optical microscopy and far‐field reflection spectroscopy. Here, infrared‐visible sum‐frequency spectro‐microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub‐wavelength spatial resolution and highly‐resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide‐field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro‐microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle‐dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non‐perturbative tool to image polariton hybridization and propagation. A non‐linear technique of infrared + visible sum‐frequency spectro‐microscopy is introduced to image phonon polaritons in SiC metasurfaces. This approach allows for access to both the spatial propagation and spectral dispersion of the polaritons with sub‐wavelength spatial resolution. The hybridization and strong coupling of propagating (SPhP) and localized (LSPhP) phonon polaritons and the activation of polaritonic edge states are observed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38895889</pmid><doi>10.1002/adma.202312507</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8271-2284</orcidid><orcidid>https://orcid.org/0000-0002-8688-1974</orcidid><orcidid>https://orcid.org/0000-0003-4935-7062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2312507-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3070803722
source Wiley Online Library All Journals
subjects Coupling
Excitation spectra
Infrared imagery
Infrared imaging
Infrared lasers
Infrared reflection
Infrared spectroscopy
Interferometry
Light reflection
Localization
metasurface
Metasurfaces
Microscopy
nonlinear
Optical microscopy
phonon polariton
Phonons
polariton interferometry
Polaritons
Propagation
Resonance
Spatial resolution
strong coupling
sum‐frequency generation
Tunable lasers
Wave propagation
title Spectroscopic and Interferometric Sum‐Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectroscopic%20and%20Interferometric%20Sum%E2%80%90Frequency%20Imaging%20of%20Strongly%20Coupled%20Phonon%20Polaritons%20in%20SiC%20Metasurfaces&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Niemann,%20Richarda&rft.date=2024-08-01&rft.volume=36&rft.issue=33&rft.spage=e2312507&rft.epage=n/a&rft.pages=e2312507-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202312507&rft_dat=%3Cproquest_cross%3E3093051810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093051810&rft_id=info:pmid/38895889&rfr_iscdi=true