Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation

Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenviro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2024-12, Vol.112 (12), p.2124-2135
Hauptverfasser: Thompson, Gunnar B., Gilchrist, Aidan E., Lam, Vincent M., Nunes, Alison C., Payan, Brittany A., Mora‐Boza, Ana, Serrano, Julio F., García, Andrés J., Harley, Brendan A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2135
container_issue 12
container_start_page 2124
container_title Journal of biomedical materials research. Part A
container_volume 112
creator Thompson, Gunnar B.
Gilchrist, Aidan E.
Lam, Vincent M.
Nunes, Alison C.
Payan, Brittany A.
Mora‐Boza, Ana
Serrano, Julio F.
García, Andrés J.
Harley, Brendan A. C.
description Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow‐focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel‐based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.
doi_str_mv 10.1002/jbm.a.37765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070802685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070802685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3395-ac15e518ca5bb7f14ddbd1cbac48fc4ebec419ce4d5f6273f45fdbf864645a413</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EoqUwsaNILEgoJY4fScZSQXkUscBsOc41uIqTECdC_fc4pDAwsPhaukdH3_0QOsXRHEdRfLXJ7VzOSZJwtoemmLE4pBln-8OfZiGJMz5BR85tPMwjFh-iCUnTjHLOp-hxBaXsTBVYWYKxpoDAGtXWb1C6QNdt8A5WdnVTG-iMCpphU5nOLxSUZQCVko3rB0VdHaMDLUsHJ7s5Q6-3Ny_Lu3D9vLpfLtahIiRjoVSYAcOpkizPE41pUeQFVrlUNNWKQg6K4kwBLZjmcUI0ZbrIdcopp0xSTGboYvT6NB89uE5Y44Y4soK6d4JESZT6W1Pm0fM_6Kbu28qnEwRjGifUv566HCl_uHMtaNG0xsp2K3Akho6F71hI8d2xp892zj63UPyyP6V6IB6BT1PC9j-XeLh-WozWLxZeiKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114274114</pqid></control><display><type>article</type><title>Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Thompson, Gunnar B. ; Gilchrist, Aidan E. ; Lam, Vincent M. ; Nunes, Alison C. ; Payan, Brittany A. ; Mora‐Boza, Ana ; Serrano, Julio F. ; García, Andrés J. ; Harley, Brendan A. C.</creator><creatorcontrib>Thompson, Gunnar B. ; Gilchrist, Aidan E. ; Lam, Vincent M. ; Nunes, Alison C. ; Payan, Brittany A. ; Mora‐Boza, Ana ; Serrano, Julio F. ; García, Andrés J. ; Harley, Brendan A. C.</creatorcontrib><description>Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow‐focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel‐based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37765</identifier><identifier>PMID: 38894666</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Biocompatibility ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone marrow ; Bone matrix ; Cell culture ; Cell Encapsulation - methods ; Cell fate ; Cell Survival - drug effects ; Cell viability ; Encapsulation ; Gelatin ; Gelatin - chemistry ; hematopoietic stem cell ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - drug effects ; Hematopoietic Stem Cells - metabolism ; Hematopoietic system ; Hemopoiesis ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Maleimides - chemistry ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - drug effects ; Mesenchymal Stem Cells - metabolism ; Mice ; Microenvironments ; Microfluidics ; microgel ; Microgels ; Microgels - chemistry ; Microparticles ; Osteoprogenitor cells ; Progenitor cells ; Stem cells</subject><ispartof>Journal of biomedical materials research. Part A, 2024-12, Vol.112 (12), p.2124-2135</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC.</rights><rights>2024 The Author(s). Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3395-ac15e518ca5bb7f14ddbd1cbac48fc4ebec419ce4d5f6273f45fdbf864645a413</cites><orcidid>0000-0001-6602-2518 ; 0000-0001-5458-154X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37765$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37765$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Gunnar B.</creatorcontrib><creatorcontrib>Gilchrist, Aidan E.</creatorcontrib><creatorcontrib>Lam, Vincent M.</creatorcontrib><creatorcontrib>Nunes, Alison C.</creatorcontrib><creatorcontrib>Payan, Brittany A.</creatorcontrib><creatorcontrib>Mora‐Boza, Ana</creatorcontrib><creatorcontrib>Serrano, Julio F.</creatorcontrib><creatorcontrib>García, Andrés J.</creatorcontrib><creatorcontrib>Harley, Brendan A. C.</creatorcontrib><title>Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow‐focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel‐based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone marrow</subject><subject>Bone matrix</subject><subject>Cell culture</subject><subject>Cell Encapsulation - methods</subject><subject>Cell fate</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Encapsulation</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>hematopoietic stem cell</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hematopoietic system</subject><subject>Hemopoiesis</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Maleimides - chemistry</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Microfluidics</subject><subject>microgel</subject><subject>Microgels</subject><subject>Microgels - chemistry</subject><subject>Microparticles</subject><subject>Osteoprogenitor cells</subject><subject>Progenitor cells</subject><subject>Stem cells</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAURi0EoqUwsaNILEgoJY4fScZSQXkUscBsOc41uIqTECdC_fc4pDAwsPhaukdH3_0QOsXRHEdRfLXJ7VzOSZJwtoemmLE4pBln-8OfZiGJMz5BR85tPMwjFh-iCUnTjHLOp-hxBaXsTBVYWYKxpoDAGtXWb1C6QNdt8A5WdnVTG-iMCpphU5nOLxSUZQCVko3rB0VdHaMDLUsHJ7s5Q6-3Ny_Lu3D9vLpfLtahIiRjoVSYAcOpkizPE41pUeQFVrlUNNWKQg6K4kwBLZjmcUI0ZbrIdcopp0xSTGboYvT6NB89uE5Y44Y4soK6d4JESZT6W1Pm0fM_6Kbu28qnEwRjGifUv566HCl_uHMtaNG0xsp2K3Akho6F71hI8d2xp892zj63UPyyP6V6IB6BT1PC9j-XeLh-WozWLxZeiKc</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Thompson, Gunnar B.</creator><creator>Gilchrist, Aidan E.</creator><creator>Lam, Vincent M.</creator><creator>Nunes, Alison C.</creator><creator>Payan, Brittany A.</creator><creator>Mora‐Boza, Ana</creator><creator>Serrano, Julio F.</creator><creator>García, Andrés J.</creator><creator>Harley, Brendan A. C.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6602-2518</orcidid><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid></search><sort><creationdate>202412</creationdate><title>Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation</title><author>Thompson, Gunnar B. ; Gilchrist, Aidan E. ; Lam, Vincent M. ; Nunes, Alison C. ; Payan, Brittany A. ; Mora‐Boza, Ana ; Serrano, Julio F. ; García, Andrés J. ; Harley, Brendan A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3395-ac15e518ca5bb7f14ddbd1cbac48fc4ebec419ce4d5f6273f45fdbf864645a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone marrow</topic><topic>Bone matrix</topic><topic>Cell culture</topic><topic>Cell Encapsulation - methods</topic><topic>Cell fate</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Encapsulation</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>hematopoietic stem cell</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hematopoietic system</topic><topic>Hemopoiesis</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Maleimides - chemistry</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Microfluidics</topic><topic>microgel</topic><topic>Microgels</topic><topic>Microgels - chemistry</topic><topic>Microparticles</topic><topic>Osteoprogenitor cells</topic><topic>Progenitor cells</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Gunnar B.</creatorcontrib><creatorcontrib>Gilchrist, Aidan E.</creatorcontrib><creatorcontrib>Lam, Vincent M.</creatorcontrib><creatorcontrib>Nunes, Alison C.</creatorcontrib><creatorcontrib>Payan, Brittany A.</creatorcontrib><creatorcontrib>Mora‐Boza, Ana</creatorcontrib><creatorcontrib>Serrano, Julio F.</creatorcontrib><creatorcontrib>García, Andrés J.</creatorcontrib><creatorcontrib>Harley, Brendan A. C.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Gunnar B.</au><au>Gilchrist, Aidan E.</au><au>Lam, Vincent M.</au><au>Nunes, Alison C.</au><au>Payan, Brittany A.</au><au>Mora‐Boza, Ana</au><au>Serrano, Julio F.</au><au>García, Andrés J.</au><au>Harley, Brendan A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2024-12</date><risdate>2024</risdate><volume>112</volume><issue>12</issue><spage>2124</spage><epage>2135</epage><pages>2124-2135</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow‐focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel‐based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38894666</pmid><doi>10.1002/jbm.a.37765</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6602-2518</orcidid><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2024-12, Vol.112 (12), p.2124-2135
issn 1549-3296
1552-4965
1552-4965
language eng
recordid cdi_proquest_miscellaneous_3070802685
source MEDLINE; Access via Wiley Online Library
subjects Animals
Biocompatibility
Biomaterials
Biomedical materials
Bone biomaterials
Bone marrow
Bone matrix
Cell culture
Cell Encapsulation - methods
Cell fate
Cell Survival - drug effects
Cell viability
Encapsulation
Gelatin
Gelatin - chemistry
hematopoietic stem cell
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - drug effects
Hematopoietic Stem Cells - metabolism
Hematopoietic system
Hemopoiesis
Hydrogels
Hydrogels - chemistry
Hydrogels - pharmacology
Maleimides - chemistry
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - drug effects
Mesenchymal Stem Cells - metabolism
Mice
Microenvironments
Microfluidics
microgel
Microgels
Microgels - chemistry
Microparticles
Osteoprogenitor cells
Progenitor cells
Stem cells
title Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gelatin%20maleimide%20microgels%20for%20hematopoietic%20progenitor%20cell%20encapsulation&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Thompson,%20Gunnar%20B.&rft.date=2024-12&rft.volume=112&rft.issue=12&rft.spage=2124&rft.epage=2135&rft.pages=2124-2135&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37765&rft_dat=%3Cproquest_cross%3E3070802685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114274114&rft_id=info:pmid/38894666&rfr_iscdi=true