Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation
Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenviro...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2024-12, Vol.112 (12), p.2124-2135 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2135 |
---|---|
container_issue | 12 |
container_start_page | 2124 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 112 |
creator | Thompson, Gunnar B. Gilchrist, Aidan E. Lam, Vincent M. Nunes, Alison C. Payan, Brittany A. Mora‐Boza, Ana Serrano, Julio F. García, Andrés J. Harley, Brendan A. C. |
description | Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow‐focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel‐based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system. |
doi_str_mv | 10.1002/jbm.a.37765 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070802685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070802685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3395-ac15e518ca5bb7f14ddbd1cbac48fc4ebec419ce4d5f6273f45fdbf864645a413</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EoqUwsaNILEgoJY4fScZSQXkUscBsOc41uIqTECdC_fc4pDAwsPhaukdH3_0QOsXRHEdRfLXJ7VzOSZJwtoemmLE4pBln-8OfZiGJMz5BR85tPMwjFh-iCUnTjHLOp-hxBaXsTBVYWYKxpoDAGtXWb1C6QNdt8A5WdnVTG-iMCpphU5nOLxSUZQCVko3rB0VdHaMDLUsHJ7s5Q6-3Ny_Lu3D9vLpfLtahIiRjoVSYAcOpkizPE41pUeQFVrlUNNWKQg6K4kwBLZjmcUI0ZbrIdcopp0xSTGboYvT6NB89uE5Y44Y4soK6d4JESZT6W1Pm0fM_6Kbu28qnEwRjGifUv566HCl_uHMtaNG0xsp2K3Akho6F71hI8d2xp892zj63UPyyP6V6IB6BT1PC9j-XeLh-WozWLxZeiKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114274114</pqid></control><display><type>article</type><title>Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Thompson, Gunnar B. ; Gilchrist, Aidan E. ; Lam, Vincent M. ; Nunes, Alison C. ; Payan, Brittany A. ; Mora‐Boza, Ana ; Serrano, Julio F. ; García, Andrés J. ; Harley, Brendan A. C.</creator><creatorcontrib>Thompson, Gunnar B. ; Gilchrist, Aidan E. ; Lam, Vincent M. ; Nunes, Alison C. ; Payan, Brittany A. ; Mora‐Boza, Ana ; Serrano, Julio F. ; García, Andrés J. ; Harley, Brendan A. C.</creatorcontrib><description>Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow‐focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel‐based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37765</identifier><identifier>PMID: 38894666</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Biocompatibility ; Biomaterials ; Biomedical materials ; Bone biomaterials ; Bone marrow ; Bone matrix ; Cell culture ; Cell Encapsulation - methods ; Cell fate ; Cell Survival - drug effects ; Cell viability ; Encapsulation ; Gelatin ; Gelatin - chemistry ; hematopoietic stem cell ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - drug effects ; Hematopoietic Stem Cells - metabolism ; Hematopoietic system ; Hemopoiesis ; Hydrogels ; Hydrogels - chemistry ; Hydrogels - pharmacology ; Maleimides - chemistry ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - drug effects ; Mesenchymal Stem Cells - metabolism ; Mice ; Microenvironments ; Microfluidics ; microgel ; Microgels ; Microgels - chemistry ; Microparticles ; Osteoprogenitor cells ; Progenitor cells ; Stem cells</subject><ispartof>Journal of biomedical materials research. Part A, 2024-12, Vol.112 (12), p.2124-2135</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC.</rights><rights>2024 The Author(s). Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3395-ac15e518ca5bb7f14ddbd1cbac48fc4ebec419ce4d5f6273f45fdbf864645a413</cites><orcidid>0000-0001-6602-2518 ; 0000-0001-5458-154X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37765$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37765$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38894666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Gunnar B.</creatorcontrib><creatorcontrib>Gilchrist, Aidan E.</creatorcontrib><creatorcontrib>Lam, Vincent M.</creatorcontrib><creatorcontrib>Nunes, Alison C.</creatorcontrib><creatorcontrib>Payan, Brittany A.</creatorcontrib><creatorcontrib>Mora‐Boza, Ana</creatorcontrib><creatorcontrib>Serrano, Julio F.</creatorcontrib><creatorcontrib>García, Andrés J.</creatorcontrib><creatorcontrib>Harley, Brendan A. C.</creatorcontrib><title>Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow‐focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel‐based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Bone biomaterials</subject><subject>Bone marrow</subject><subject>Bone matrix</subject><subject>Cell culture</subject><subject>Cell Encapsulation - methods</subject><subject>Cell fate</subject><subject>Cell Survival - drug effects</subject><subject>Cell viability</subject><subject>Encapsulation</subject><subject>Gelatin</subject><subject>Gelatin - chemistry</subject><subject>hematopoietic stem cell</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hematopoietic system</subject><subject>Hemopoiesis</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogels - pharmacology</subject><subject>Maleimides - chemistry</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Microenvironments</subject><subject>Microfluidics</subject><subject>microgel</subject><subject>Microgels</subject><subject>Microgels - chemistry</subject><subject>Microparticles</subject><subject>Osteoprogenitor cells</subject><subject>Progenitor cells</subject><subject>Stem cells</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAURi0EoqUwsaNILEgoJY4fScZSQXkUscBsOc41uIqTECdC_fc4pDAwsPhaukdH3_0QOsXRHEdRfLXJ7VzOSZJwtoemmLE4pBln-8OfZiGJMz5BR85tPMwjFh-iCUnTjHLOp-hxBaXsTBVYWYKxpoDAGtXWb1C6QNdt8A5WdnVTG-iMCpphU5nOLxSUZQCVko3rB0VdHaMDLUsHJ7s5Q6-3Ny_Lu3D9vLpfLtahIiRjoVSYAcOpkizPE41pUeQFVrlUNNWKQg6K4kwBLZjmcUI0ZbrIdcopp0xSTGboYvT6NB89uE5Y44Y4soK6d4JESZT6W1Pm0fM_6Kbu28qnEwRjGifUv566HCl_uHMtaNG0xsp2K3Akho6F71hI8d2xp892zj63UPyyP6V6IB6BT1PC9j-XeLh-WozWLxZeiKc</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Thompson, Gunnar B.</creator><creator>Gilchrist, Aidan E.</creator><creator>Lam, Vincent M.</creator><creator>Nunes, Alison C.</creator><creator>Payan, Brittany A.</creator><creator>Mora‐Boza, Ana</creator><creator>Serrano, Julio F.</creator><creator>García, Andrés J.</creator><creator>Harley, Brendan A. C.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6602-2518</orcidid><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid></search><sort><creationdate>202412</creationdate><title>Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation</title><author>Thompson, Gunnar B. ; Gilchrist, Aidan E. ; Lam, Vincent M. ; Nunes, Alison C. ; Payan, Brittany A. ; Mora‐Boza, Ana ; Serrano, Julio F. ; García, Andrés J. ; Harley, Brendan A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3395-ac15e518ca5bb7f14ddbd1cbac48fc4ebec419ce4d5f6273f45fdbf864645a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Bone biomaterials</topic><topic>Bone marrow</topic><topic>Bone matrix</topic><topic>Cell culture</topic><topic>Cell Encapsulation - methods</topic><topic>Cell fate</topic><topic>Cell Survival - drug effects</topic><topic>Cell viability</topic><topic>Encapsulation</topic><topic>Gelatin</topic><topic>Gelatin - chemistry</topic><topic>hematopoietic stem cell</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hematopoietic system</topic><topic>Hemopoiesis</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogels - pharmacology</topic><topic>Maleimides - chemistry</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Microenvironments</topic><topic>Microfluidics</topic><topic>microgel</topic><topic>Microgels</topic><topic>Microgels - chemistry</topic><topic>Microparticles</topic><topic>Osteoprogenitor cells</topic><topic>Progenitor cells</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Gunnar B.</creatorcontrib><creatorcontrib>Gilchrist, Aidan E.</creatorcontrib><creatorcontrib>Lam, Vincent M.</creatorcontrib><creatorcontrib>Nunes, Alison C.</creatorcontrib><creatorcontrib>Payan, Brittany A.</creatorcontrib><creatorcontrib>Mora‐Boza, Ana</creatorcontrib><creatorcontrib>Serrano, Julio F.</creatorcontrib><creatorcontrib>García, Andrés J.</creatorcontrib><creatorcontrib>Harley, Brendan A. C.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Gunnar B.</au><au>Gilchrist, Aidan E.</au><au>Lam, Vincent M.</au><au>Nunes, Alison C.</au><au>Payan, Brittany A.</au><au>Mora‐Boza, Ana</au><au>Serrano, Julio F.</au><au>García, Andrés J.</au><au>Harley, Brendan A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2024-12</date><risdate>2024</risdate><volume>112</volume><issue>12</issue><spage>2124</spage><epage>2135</epage><pages>2124-2135</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell‐derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow‐focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel‐based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38894666</pmid><doi>10.1002/jbm.a.37765</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6602-2518</orcidid><orcidid>https://orcid.org/0000-0001-5458-154X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2024-12, Vol.112 (12), p.2124-2135 |
issn | 1549-3296 1552-4965 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_3070802685 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Biocompatibility Biomaterials Biomedical materials Bone biomaterials Bone marrow Bone matrix Cell culture Cell Encapsulation - methods Cell fate Cell Survival - drug effects Cell viability Encapsulation Gelatin Gelatin - chemistry hematopoietic stem cell Hematopoietic stem cells Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - drug effects Hematopoietic Stem Cells - metabolism Hematopoietic system Hemopoiesis Hydrogels Hydrogels - chemistry Hydrogels - pharmacology Maleimides - chemistry Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - drug effects Mesenchymal Stem Cells - metabolism Mice Microenvironments Microfluidics microgel Microgels Microgels - chemistry Microparticles Osteoprogenitor cells Progenitor cells Stem cells |
title | Gelatin maleimide microgels for hematopoietic progenitor cell encapsulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gelatin%20maleimide%20microgels%20for%20hematopoietic%20progenitor%20cell%20encapsulation&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Thompson,%20Gunnar%20B.&rft.date=2024-12&rft.volume=112&rft.issue=12&rft.spage=2124&rft.epage=2135&rft.pages=2124-2135&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37765&rft_dat=%3Cproquest_cross%3E3070802685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114274114&rft_id=info:pmid/38894666&rfr_iscdi=true |