Glioprotective Effects of Sulforaphane in Hypothalamus: Focus on Aging Brain

Sulforaphane is a natural compound with neuroprotective activity, but its effects on hypothalamus remain unknown. In line with this, astrocytes are critical cells to maintain brain homeostasis, and hypothalamic astrocytes are fundamental for sensing and responding to environmental changes involved i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2024-09, Vol.49 (9), p.2505-2518
Hauptverfasser: Santos, Camila Leite, Weber, Fernanda Becker, Belló-Klein, Adriane, Bobermin, Larissa Daniele, Quincozes-Santos, André
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulforaphane is a natural compound with neuroprotective activity, but its effects on hypothalamus remain unknown. In line with this, astrocytes are critical cells to maintain brain homeostasis, and hypothalamic astrocytes are fundamental for sensing and responding to environmental changes involved in a variety of homeostatic functions. Changes in brain functionality, particularly associated with hypothalamic astrocytes, can contribute to age-related neurochemical alterations and, consequently, neurodegenerative diseases. Thus, here, we investigated the glioprotective effects of sulforaphane on hypothalamic astrocyte cultures and hypothalamic cell suspension obtained from aged Wistar rats (24 months old). Sulforaphane showed anti-inflammatory and antioxidant properties, as well as modulated the mRNA expression of astroglial markers, such as aldehyde dehydrogenase 1 family member L1, aquaporin 4, and vascular endothelial growth factor. In addition, it increased the expression and extracellular levels of trophic factors, such as glia-derived neurotrophic factor and nerve growth factor, as well as the release of brain-derived neurotrophic factor and the mRNA of TrkA, which is a receptor associated with trophic factors. Sulforaphane also modulated the expression of classical pathways associated with glioprotection, including nuclear factor erythroid-derived 2-like 2, heme oxygenase-1, nuclear factor kappa B p65 subunit, and AMP-activated protein kinase. Finally, a cell suspension with neurons and glial cells was used to confirm the predominant effect of sulforaphane in glial cells. In summary, this study indicated the anti-aging and glioprotective activities of sulforaphane in aged astrocytes.
ISSN:0364-3190
1573-6903
1573-6903
DOI:10.1007/s11064-024-04196-8