Coupling of photovoltaics with neurostimulation electrodes—optical to electrolytic transduction

The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2024-07, Vol.21 (4), p.46003
Hauptverfasser: Jakešová, Marie, Kunovský, Ondřej, Gablech, Imrich, Khodagholy, Dion, Gelinas, Jennifer, Głowacki, Eric Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 46003
container_title Journal of neural engineering
container_volume 21
creator Jakešová, Marie
Kunovský, Ondřej
Gablech, Imrich
Khodagholy, Dion
Gelinas, Jennifer
Głowacki, Eric Daniel
description The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents. We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrO , Ti, W, PtO , Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit. Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types. This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to both and applications, offering a resource to the neural engineering community.
doi_str_mv 10.1088/1741-2552/ad593d
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3070792050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070792050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-8e3d5d39b1a23ede639b1315c8c920f9c2c4926c5b5f132addedb5b72c78e0df3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EoqWwM6FsMBDqnzhxRlTxJyGxwGw5tkNdOXGIHVA3HoIn5ElISNsJJl8dnXN87wfAKYJXCDI2R1mCYkwpngtFc6L2wHQn7e_mFE7AkfcrCAnKcngIJoQxRlMGp0AsXNdYU79GroyapQvu3dkgjPTRhwnLqNZd63wwVWdFMK6OtNUytE5p__355ZpgpLBRcFvdrnslCq2overkkDgGB6WwXp9s3hl4ub15XtzHj093D4vrx1jinISYaaKoInmBBCZa6XQYCaKSyRzDMpdYJjlOJS1oiQgWSmlV0CLDMmMaqpLMwMXY27TurdM-8Mp4qa0VtXad5wRmMOurKOytcLTK_jbf6pI3ralEu-YI8gEsH8jxgSIfwfaRs017V1Ra7QJbkr3hfDQY1_CV69q6P5avas0x4gmHSdrj583vopd_OP_9-QduwZNT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070792050</pqid></control><display><type>article</type><title>Coupling of photovoltaics with neurostimulation electrodes—optical to electrolytic transduction</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Jakešová, Marie ; Kunovský, Ondřej ; Gablech, Imrich ; Khodagholy, Dion ; Gelinas, Jennifer ; Głowacki, Eric Daniel</creator><creatorcontrib>Jakešová, Marie ; Kunovský, Ondřej ; Gablech, Imrich ; Khodagholy, Dion ; Gelinas, Jennifer ; Głowacki, Eric Daniel</creatorcontrib><description>The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents. We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrO , Ti, W, PtO , Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit. Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types. This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to both and applications, offering a resource to the neural engineering community.</description><identifier>ISSN: 1741-2560</identifier><identifier>ISSN: 1741-2552</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/ad593d</identifier><identifier>PMID: 38885680</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>bioelectronics ; Electric Stimulation - instrumentation ; Electric Stimulation - methods ; Electrodes, Implanted ; Equipment Design - methods ; Implantable Neurostimulators ; Microelectrodes ; neurostimulation ; photovoltaics ; wireless power transfer</subject><ispartof>Journal of neural engineering, 2024-07, Vol.21 (4), p.46003</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-8e3d5d39b1a23ede639b1315c8c920f9c2c4926c5b5f132addedb5b72c78e0df3</cites><orcidid>0000-0002-0280-8017 ; 0000-0003-4218-1287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/ad593d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38885680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jakešová, Marie</creatorcontrib><creatorcontrib>Kunovský, Ondřej</creatorcontrib><creatorcontrib>Gablech, Imrich</creatorcontrib><creatorcontrib>Khodagholy, Dion</creatorcontrib><creatorcontrib>Gelinas, Jennifer</creatorcontrib><creatorcontrib>Głowacki, Eric Daniel</creatorcontrib><title>Coupling of photovoltaics with neurostimulation electrodes—optical to electrolytic transduction</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents. We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrO , Ti, W, PtO , Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit. Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types. This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to both and applications, offering a resource to the neural engineering community.</description><subject>bioelectronics</subject><subject>Electric Stimulation - instrumentation</subject><subject>Electric Stimulation - methods</subject><subject>Electrodes, Implanted</subject><subject>Equipment Design - methods</subject><subject>Implantable Neurostimulators</subject><subject>Microelectrodes</subject><subject>neurostimulation</subject><subject>photovoltaics</subject><subject>wireless power transfer</subject><issn>1741-2560</issn><issn>1741-2552</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kL1OwzAUhS0EoqWwM6FsMBDqnzhxRlTxJyGxwGw5tkNdOXGIHVA3HoIn5ElISNsJJl8dnXN87wfAKYJXCDI2R1mCYkwpngtFc6L2wHQn7e_mFE7AkfcrCAnKcngIJoQxRlMGp0AsXNdYU79GroyapQvu3dkgjPTRhwnLqNZd63wwVWdFMK6OtNUytE5p__355ZpgpLBRcFvdrnslCq2overkkDgGB6WwXp9s3hl4ub15XtzHj093D4vrx1jinISYaaKoInmBBCZa6XQYCaKSyRzDMpdYJjlOJS1oiQgWSmlV0CLDMmMaqpLMwMXY27TurdM-8Mp4qa0VtXad5wRmMOurKOytcLTK_jbf6pI3ralEu-YI8gEsH8jxgSIfwfaRs017V1Ra7QJbkr3hfDQY1_CV69q6P5avas0x4gmHSdrj583vopd_OP_9-QduwZNT</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Jakešová, Marie</creator><creator>Kunovský, Ondřej</creator><creator>Gablech, Imrich</creator><creator>Khodagholy, Dion</creator><creator>Gelinas, Jennifer</creator><creator>Głowacki, Eric Daniel</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0280-8017</orcidid><orcidid>https://orcid.org/0000-0003-4218-1287</orcidid></search><sort><creationdate>20240702</creationdate><title>Coupling of photovoltaics with neurostimulation electrodes—optical to electrolytic transduction</title><author>Jakešová, Marie ; Kunovský, Ondřej ; Gablech, Imrich ; Khodagholy, Dion ; Gelinas, Jennifer ; Głowacki, Eric Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-8e3d5d39b1a23ede639b1315c8c920f9c2c4926c5b5f132addedb5b72c78e0df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bioelectronics</topic><topic>Electric Stimulation - instrumentation</topic><topic>Electric Stimulation - methods</topic><topic>Electrodes, Implanted</topic><topic>Equipment Design - methods</topic><topic>Implantable Neurostimulators</topic><topic>Microelectrodes</topic><topic>neurostimulation</topic><topic>photovoltaics</topic><topic>wireless power transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jakešová, Marie</creatorcontrib><creatorcontrib>Kunovský, Ondřej</creatorcontrib><creatorcontrib>Gablech, Imrich</creatorcontrib><creatorcontrib>Khodagholy, Dion</creatorcontrib><creatorcontrib>Gelinas, Jennifer</creatorcontrib><creatorcontrib>Głowacki, Eric Daniel</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jakešová, Marie</au><au>Kunovský, Ondřej</au><au>Gablech, Imrich</au><au>Khodagholy, Dion</au><au>Gelinas, Jennifer</au><au>Głowacki, Eric Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of photovoltaics with neurostimulation electrodes—optical to electrolytic transduction</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2024-07-02</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>46003</spage><pages>46003-</pages><issn>1741-2560</issn><issn>1741-2552</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents. We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrO , Ti, W, PtO , Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit. Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types. This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to both and applications, offering a resource to the neural engineering community.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>38885680</pmid><doi>10.1088/1741-2552/ad593d</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0280-8017</orcidid><orcidid>https://orcid.org/0000-0003-4218-1287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1741-2560
ispartof Journal of neural engineering, 2024-07, Vol.21 (4), p.46003
issn 1741-2560
1741-2552
1741-2552
language eng
recordid cdi_proquest_miscellaneous_3070792050
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects bioelectronics
Electric Stimulation - instrumentation
Electric Stimulation - methods
Electrodes, Implanted
Equipment Design - methods
Implantable Neurostimulators
Microelectrodes
neurostimulation
photovoltaics
wireless power transfer
title Coupling of photovoltaics with neurostimulation electrodes—optical to electrolytic transduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20photovoltaics%20with%20neurostimulation%20electrodes%E2%80%94optical%20to%20electrolytic%20transduction&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Jake%C5%A1ov%C3%A1,%20Marie&rft.date=2024-07-02&rft.volume=21&rft.issue=4&rft.spage=46003&rft.pages=46003-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/ad593d&rft_dat=%3Cproquest_iop_j%3E3070792050%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070792050&rft_id=info:pmid/38885680&rfr_iscdi=true