Colloidal stabilization of hydrophobic InSe 2D nanosheets in a model environmental aqueous solution and their impact on Shewanella oneidensis MR-1
Semiconductor InSe 2D nanomaterials have emerged as potential photoresponsive materials for broadly distributed photodetectors and wearable electronics technologies due to their high photoresponsivity and thermal stability. This paper addresses an environmental concern about the fate of InSe 2D nano...
Gespeichert in:
Veröffentlicht in: | Environmental science. Nano 2024-02, Vol.11 (2), p.627-636 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semiconductor InSe 2D nanomaterials have emerged as potential photoresponsive materials for broadly distributed photodetectors and wearable electronics technologies due to their high photoresponsivity and thermal stability. This paper addresses an environmental concern about the fate of InSe 2D nanosheets when disposed and released into the environment after use. Semiconducting materials are potentially reactive and often form environmentally damaging species, for example reactive oxygen and nitrogen species, when degraded. InSe nanosheets are prepared using a semi bottom-up approach which involves a reaction between indium and selenium precursors at elevated temperature in an oxygen-free environment to prevent oxidation. InSe nanosheets are formed as a stable intermediate with micrometer-sized lateral dimensions and a few monolayer thickness. The InSe 2D nanosheets are obtained when the reaction is stopped after 30 minutes by cooling. Keeping the reaction at elevated temperature for a longer period, for example 60 minutes leads to the formation of InSe 3D nanoparticles of about 5 nm in diameter, a thermodynamically more stable form of InSe. The paper focuses on the colloidal stabilization of InSe nanosheets in an aqueous solution that contains epigallocatechin gallate (EGCG), a natural organic matter (NOM) simulant. We show that EGCG coats the surface of the hydrophobic, water-insoluble InSe nanosheets
physisorption. The formed EGCG-coated InSe nanosheets are colloidally stable in aqueous solution. While unmodified semiconducting InSe nanosheets could produce reactive oxygen species (ROS) when illuminated, our study shows low levels of ROS generation by EGCG-coated InSe nanosheets under ambient light, which might be attributed to ROS quenching by EGCG. Growth-based viability (GBV) assays show that the colloidally stable EGCG-coated InSe nanosheets adversely impact the bacterial growth of
MR-1, an environmentally relevant Gram-negative bacterium in aqueous media. The impact on bacterial growth is driven by the EGCG coating of the nanosheets. In addition, live/dead assays show insignificant membrane damage of the
MR-1 cells by InSe nanosheets, suggesting a weak association of EGCG-coated nanosheets with the cells. It is likely that the adverse impact of EGCG-coated nanosheets on bacterial growth is the result of increasing local concentration of EGCG either when adsorbed on the nanosheets when the nanosheets interact with the cells, or when desorbed from th |
---|---|
ISSN: | 2051-8153 2051-8161 |
DOI: | 10.1039/d3en00382e |