A Triboelectric‐Electromagnetic Hybrid Nanogenerator with Magnetic Coupling Assisted Waterproof Encapsulation for Long‐Lasting Energy Harvesting
Ocean energy harvesting based on a triboelectric nanogenerator (TENG) has great application potential, while the encapsulation of triboelectric devices in water poses a critical issue. Herein, a triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) consisting of TENGs and electromagnetic gener...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (42), p.e2403879-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | e2403879 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Ding, Shuai Zhai, Hua Tao, Xinglin Yang, Peng Liu, Zhaoqi Qin, Siyao Hong, Zhanyong Chen, Xiangyu Wang, Zhong Lin |
description | Ocean energy harvesting based on a triboelectric nanogenerator (TENG) has great application potential, while the encapsulation of triboelectric devices in water poses a critical issue. Herein, a triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) consisting of TENGs and electromagnetic generators (EMGs) is proposed to harvest water flow energy. A magnetic coupling transmission component is applied to replace traditional bearing structures, which can realize the fully enclosed packaging of the TENG devices and achieve long‐lasting energy harvesting from water flow. Under the intense water impact, magnetic coupling reduces the possibility of internal gear damage due to excessive torque, indicating superior stability and robustness compared to conventional TENG. At the waterwheel rotates speed of 75 rpm, the TE‐HNG can generate an output peak power of 114.83 mW, corresponding to a peak power density of 37.105 W m−3. After 5 h of continuous operation, the electrical output attenuation of TENG is less than 3%, demonstrating excellent device durability. Moreover, a self‐powered temperature sensing system and a self‐powered cathodic protection system based on the TE‐HNG are developed and illustrated. This work provides a prospective strategy for improving the output stability of TENGs, which benefits the practical applications of the TENGs in large‐scale blue energy harvesting.
A triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) with magnetic coupling assisted waterproof encapsulation is designed, which can harvest long‐lasting energy from water flow with excellent durability. FE‐HNG can light up thousands of LEDs and can also be used as a power source for temperature sensing systems and cathode (hull) protection systems. |
doi_str_mv | 10.1002/smll.202403879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3069175874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117885223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2589-2f8f65e2739ad80fc7dc70e65e0588433a16779ab6e5b80a5215d61489184c713</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EoqWwZYkssWEzg3-S2FmORgODlMKCIpaW49wEV4492Emr2fEILHhCngRPpx0kNqzu1dV3zj3SQeglJUtKCHubRueWjLCCcCnqR-icVpQvKsnqx6edkjP0LKVrQjhlhXiKzriUkjJRnKNfK3wVbRvAgZmiNb9__NzcrWHUg4fJGrzdt9F2-KP2YQAPUU8h4ls7fcOXD8g6zDtn_YBXKdk0QYe_6gniLobQ4403epdmpycbPO6zuAl-yI8anaaDaJNNhz3e6ngDd5fn6EmvXYIX9_MCfXm3uVpvF82n9x_Wq2ZhWCnrBetlX5XABK91J0lvRGcEgXwipZQF55pWQtS6raBsJdElo2VX0ULWVBZGUH6B3hx9c9Dvc_6tRpsMOKc9hDkpTqqailKKIqOv_0Gvwxx9Tqc4pULKkjGeqeWRMjGkFKFXu2hHHfeKEnXoSx36Uqe-suDVve3cjtCd8IeCMlAfgVvrYP8fO_X5smn-mv8BKAKmGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117885223</pqid></control><display><type>article</type><title>A Triboelectric‐Electromagnetic Hybrid Nanogenerator with Magnetic Coupling Assisted Waterproof Encapsulation for Long‐Lasting Energy Harvesting</title><source>Wiley Online Library All Journals</source><creator>Ding, Shuai ; Zhai, Hua ; Tao, Xinglin ; Yang, Peng ; Liu, Zhaoqi ; Qin, Siyao ; Hong, Zhanyong ; Chen, Xiangyu ; Wang, Zhong Lin</creator><creatorcontrib>Ding, Shuai ; Zhai, Hua ; Tao, Xinglin ; Yang, Peng ; Liu, Zhaoqi ; Qin, Siyao ; Hong, Zhanyong ; Chen, Xiangyu ; Wang, Zhong Lin</creatorcontrib><description>Ocean energy harvesting based on a triboelectric nanogenerator (TENG) has great application potential, while the encapsulation of triboelectric devices in water poses a critical issue. Herein, a triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) consisting of TENGs and electromagnetic generators (EMGs) is proposed to harvest water flow energy. A magnetic coupling transmission component is applied to replace traditional bearing structures, which can realize the fully enclosed packaging of the TENG devices and achieve long‐lasting energy harvesting from water flow. Under the intense water impact, magnetic coupling reduces the possibility of internal gear damage due to excessive torque, indicating superior stability and robustness compared to conventional TENG. At the waterwheel rotates speed of 75 rpm, the TE‐HNG can generate an output peak power of 114.83 mW, corresponding to a peak power density of 37.105 W m−3. After 5 h of continuous operation, the electrical output attenuation of TENG is less than 3%, demonstrating excellent device durability. Moreover, a self‐powered temperature sensing system and a self‐powered cathodic protection system based on the TE‐HNG are developed and illustrated. This work provides a prospective strategy for improving the output stability of TENGs, which benefits the practical applications of the TENGs in large‐scale blue energy harvesting.
A triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) with magnetic coupling assisted waterproof encapsulation is designed, which can harvest long‐lasting energy from water flow with excellent durability. FE‐HNG can light up thousands of LEDs and can also be used as a power source for temperature sensing systems and cathode (hull) protection systems.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202403879</identifier><identifier>PMID: 38881274</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cathodic protection ; Coupling ; Encapsulation ; Energy harvesting ; gear transmission ; Internal gears ; magnetic coupling ; Nanogenerators ; Stability ; triboelectric–electromagnetic hybrid nanogenerator ; Water damage ; Water flow ; water flow energy harvesting ; Water wheels</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (42), p.e2403879-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2589-2f8f65e2739ad80fc7dc70e65e0588433a16779ab6e5b80a5215d61489184c713</cites><orcidid>0000-0002-0871-3270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202403879$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202403879$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38881274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Shuai</creatorcontrib><creatorcontrib>Zhai, Hua</creatorcontrib><creatorcontrib>Tao, Xinglin</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Liu, Zhaoqi</creatorcontrib><creatorcontrib>Qin, Siyao</creatorcontrib><creatorcontrib>Hong, Zhanyong</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><title>A Triboelectric‐Electromagnetic Hybrid Nanogenerator with Magnetic Coupling Assisted Waterproof Encapsulation for Long‐Lasting Energy Harvesting</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Ocean energy harvesting based on a triboelectric nanogenerator (TENG) has great application potential, while the encapsulation of triboelectric devices in water poses a critical issue. Herein, a triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) consisting of TENGs and electromagnetic generators (EMGs) is proposed to harvest water flow energy. A magnetic coupling transmission component is applied to replace traditional bearing structures, which can realize the fully enclosed packaging of the TENG devices and achieve long‐lasting energy harvesting from water flow. Under the intense water impact, magnetic coupling reduces the possibility of internal gear damage due to excessive torque, indicating superior stability and robustness compared to conventional TENG. At the waterwheel rotates speed of 75 rpm, the TE‐HNG can generate an output peak power of 114.83 mW, corresponding to a peak power density of 37.105 W m−3. After 5 h of continuous operation, the electrical output attenuation of TENG is less than 3%, demonstrating excellent device durability. Moreover, a self‐powered temperature sensing system and a self‐powered cathodic protection system based on the TE‐HNG are developed and illustrated. This work provides a prospective strategy for improving the output stability of TENGs, which benefits the practical applications of the TENGs in large‐scale blue energy harvesting.
A triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) with magnetic coupling assisted waterproof encapsulation is designed, which can harvest long‐lasting energy from water flow with excellent durability. FE‐HNG can light up thousands of LEDs and can also be used as a power source for temperature sensing systems and cathode (hull) protection systems.</description><subject>Cathodic protection</subject><subject>Coupling</subject><subject>Encapsulation</subject><subject>Energy harvesting</subject><subject>gear transmission</subject><subject>Internal gears</subject><subject>magnetic coupling</subject><subject>Nanogenerators</subject><subject>Stability</subject><subject>triboelectric–electromagnetic hybrid nanogenerator</subject><subject>Water damage</subject><subject>Water flow</subject><subject>water flow energy harvesting</subject><subject>Water wheels</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EoqWwZYkssWEzg3-S2FmORgODlMKCIpaW49wEV4492Emr2fEILHhCngRPpx0kNqzu1dV3zj3SQeglJUtKCHubRueWjLCCcCnqR-icVpQvKsnqx6edkjP0LKVrQjhlhXiKzriUkjJRnKNfK3wVbRvAgZmiNb9__NzcrWHUg4fJGrzdt9F2-KP2YQAPUU8h4ls7fcOXD8g6zDtn_YBXKdk0QYe_6gniLobQ4403epdmpycbPO6zuAl-yI8anaaDaJNNhz3e6ngDd5fn6EmvXYIX9_MCfXm3uVpvF82n9x_Wq2ZhWCnrBetlX5XABK91J0lvRGcEgXwipZQF55pWQtS6raBsJdElo2VX0ULWVBZGUH6B3hx9c9Dvc_6tRpsMOKc9hDkpTqqailKKIqOv_0Gvwxx9Tqc4pULKkjGeqeWRMjGkFKFXu2hHHfeKEnXoSx36Uqe-suDVve3cjtCd8IeCMlAfgVvrYP8fO_X5smn-mv8BKAKmGw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Ding, Shuai</creator><creator>Zhai, Hua</creator><creator>Tao, Xinglin</creator><creator>Yang, Peng</creator><creator>Liu, Zhaoqi</creator><creator>Qin, Siyao</creator><creator>Hong, Zhanyong</creator><creator>Chen, Xiangyu</creator><creator>Wang, Zhong Lin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0871-3270</orcidid></search><sort><creationdate>20241001</creationdate><title>A Triboelectric‐Electromagnetic Hybrid Nanogenerator with Magnetic Coupling Assisted Waterproof Encapsulation for Long‐Lasting Energy Harvesting</title><author>Ding, Shuai ; Zhai, Hua ; Tao, Xinglin ; Yang, Peng ; Liu, Zhaoqi ; Qin, Siyao ; Hong, Zhanyong ; Chen, Xiangyu ; Wang, Zhong Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2589-2f8f65e2739ad80fc7dc70e65e0588433a16779ab6e5b80a5215d61489184c713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodic protection</topic><topic>Coupling</topic><topic>Encapsulation</topic><topic>Energy harvesting</topic><topic>gear transmission</topic><topic>Internal gears</topic><topic>magnetic coupling</topic><topic>Nanogenerators</topic><topic>Stability</topic><topic>triboelectric–electromagnetic hybrid nanogenerator</topic><topic>Water damage</topic><topic>Water flow</topic><topic>water flow energy harvesting</topic><topic>Water wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Shuai</creatorcontrib><creatorcontrib>Zhai, Hua</creatorcontrib><creatorcontrib>Tao, Xinglin</creatorcontrib><creatorcontrib>Yang, Peng</creatorcontrib><creatorcontrib>Liu, Zhaoqi</creatorcontrib><creatorcontrib>Qin, Siyao</creatorcontrib><creatorcontrib>Hong, Zhanyong</creatorcontrib><creatorcontrib>Chen, Xiangyu</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Shuai</au><au>Zhai, Hua</au><au>Tao, Xinglin</au><au>Yang, Peng</au><au>Liu, Zhaoqi</au><au>Qin, Siyao</au><au>Hong, Zhanyong</au><au>Chen, Xiangyu</au><au>Wang, Zhong Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Triboelectric‐Electromagnetic Hybrid Nanogenerator with Magnetic Coupling Assisted Waterproof Encapsulation for Long‐Lasting Energy Harvesting</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>20</volume><issue>42</issue><spage>e2403879</spage><epage>n/a</epage><pages>e2403879-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Ocean energy harvesting based on a triboelectric nanogenerator (TENG) has great application potential, while the encapsulation of triboelectric devices in water poses a critical issue. Herein, a triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) consisting of TENGs and electromagnetic generators (EMGs) is proposed to harvest water flow energy. A magnetic coupling transmission component is applied to replace traditional bearing structures, which can realize the fully enclosed packaging of the TENG devices and achieve long‐lasting energy harvesting from water flow. Under the intense water impact, magnetic coupling reduces the possibility of internal gear damage due to excessive torque, indicating superior stability and robustness compared to conventional TENG. At the waterwheel rotates speed of 75 rpm, the TE‐HNG can generate an output peak power of 114.83 mW, corresponding to a peak power density of 37.105 W m−3. After 5 h of continuous operation, the electrical output attenuation of TENG is less than 3%, demonstrating excellent device durability. Moreover, a self‐powered temperature sensing system and a self‐powered cathodic protection system based on the TE‐HNG are developed and illustrated. This work provides a prospective strategy for improving the output stability of TENGs, which benefits the practical applications of the TENGs in large‐scale blue energy harvesting.
A triboelectric–electromagnetic hybrid nanogenerator (TE‐HNG) with magnetic coupling assisted waterproof encapsulation is designed, which can harvest long‐lasting energy from water flow with excellent durability. FE‐HNG can light up thousands of LEDs and can also be used as a power source for temperature sensing systems and cathode (hull) protection systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38881274</pmid><doi>10.1002/smll.202403879</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0871-3270</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (42), p.e2403879-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3069175874 |
source | Wiley Online Library All Journals |
subjects | Cathodic protection Coupling Encapsulation Energy harvesting gear transmission Internal gears magnetic coupling Nanogenerators Stability triboelectric–electromagnetic hybrid nanogenerator Water damage Water flow water flow energy harvesting Water wheels |
title | A Triboelectric‐Electromagnetic Hybrid Nanogenerator with Magnetic Coupling Assisted Waterproof Encapsulation for Long‐Lasting Energy Harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Triboelectric%E2%80%90Electromagnetic%20Hybrid%20Nanogenerator%20with%20Magnetic%20Coupling%20Assisted%20Waterproof%20Encapsulation%20for%20Long%E2%80%90Lasting%20Energy%20Harvesting&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Ding,%20Shuai&rft.date=2024-10-01&rft.volume=20&rft.issue=42&rft.spage=e2403879&rft.epage=n/a&rft.pages=e2403879-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202403879&rft_dat=%3Cproquest_cross%3E3117885223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117885223&rft_id=info:pmid/38881274&rfr_iscdi=true |