Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose

(+)-Ambrein is the primary component of ambergris, a rare product found in sperm whales ( Physeter microcephalus ). Microbial production using sustainable resources is a promising way to replace animal extraction and chemical synthesis. We constructed an engineered yeast strain to produce (+)-ambrei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology letters 2024-08, Vol.46 (4), p.615-626
Hauptverfasser: Lin, Chumin, Zhang, Xiaopeng, Ji, Zhongju, Fan, Baolian, Chen, Yaman, Wu, Yuhong, Gan, Yuhong, Li, Zhengping, Shang, Yi, Duan, Lixin, Wang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 626
container_issue 4
container_start_page 615
container_title Biotechnology letters
container_volume 46
creator Lin, Chumin
Zhang, Xiaopeng
Ji, Zhongju
Fan, Baolian
Chen, Yaman
Wu, Yuhong
Gan, Yuhong
Li, Zhengping
Shang, Yi
Duan, Lixin
Wang, Feng
description (+)-Ambrein is the primary component of ambergris, a rare product found in sperm whales ( Physeter microcephalus ). Microbial production using sustainable resources is a promising way to replace animal extraction and chemical synthesis. We constructed an engineered yeast strain to produce (+)-ambrein de novo . Squalene is a substrate for the biosynthesis of (+)-ambrein. Firstly, strain LQ2, with a squalene yield of 384.4 mg/L was obtained by optimizing the mevalonate pathway. Then we engineered a method for the de novo production of (+)-ambrein using glucose as a carbon source by overexpressing codon-optimized tetraprenyl- β -curcumene cyclase (BmeTC) and its double mutant enzyme (BmeTC Y167A/D373C ), evaluating different promoters, knocking out GAL80 , and fusing the protein with BmeTC and squalene synthase (AtSQS2). Nevertheless, the synthesis of (+)-ambrein is still limited, causing low catalytic activity in BmeTC. We carried out a protein surface amino acid modification of BmeTC. The dominant mutant BmeTC K6A/Q9E/N454A for the first step was obtained to improve its catalytic activity. The yield of (+)-ambrein increased from 35.2 to 59.0 mg/L in the shake flask and finally reached 457.4 mg/L in the 2 L fermenter, the highest titer currently available for yeast. Efficiently engineered strains and inexpensive fermentation conditions for the industrial production of (+)-ambrein. The metabolic engineering tools provide directions for optimizing the biosynthesis of other high-value triterpenes.
doi_str_mv 10.1007/s10529-024-03502-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3069175679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3074234095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-d406344da86729ca2aea97f63c980618e19a5eeca6e70f589d8fd738b4e787a83</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoTjv6B1xIwM2IRG8elcdyGHzBiAt1HdKpW9UZqipt0jUw_960PSq4cHU33zn3cA4hzzm84QDmbeXQCcdAKAayA8HEA7LhnZFMG6Mfkg1wxVmnnDgjT2q9AQBnwDwmZ9Jaq6zVGzJ-xkPY5ilFisuYFsSSlpHmgX4NMe5CyfNdxEojFrxNNQWkQy50l8Ydm_AWJ7ovuV_jIeXlqLp4_YqFeVswLXRoYjpOa8wVn5JHQ5gqPru_5-T7-3ffrj6y6y8fPl1dXrMoOn1gvQItleqD1Ua4GETA4MygZXQWNLfIXegQY9BoYOis6-3QG2m3Co01wcpzcnHybbF-rFgPfk414jSFBfNavQTtuOm0cQ19-Q96k9eytHSNMkpIBa5rlDhRseRaCw5-X9Icyp3n4I8z-NMMvs3gf83gRRO9uLdetzP2fyS_e2-APAF1f-wby9_f_7H9CS68krM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074234095</pqid></control><display><type>article</type><title>Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Lin, Chumin ; Zhang, Xiaopeng ; Ji, Zhongju ; Fan, Baolian ; Chen, Yaman ; Wu, Yuhong ; Gan, Yuhong ; Li, Zhengping ; Shang, Yi ; Duan, Lixin ; Wang, Feng</creator><creatorcontrib>Lin, Chumin ; Zhang, Xiaopeng ; Ji, Zhongju ; Fan, Baolian ; Chen, Yaman ; Wu, Yuhong ; Gan, Yuhong ; Li, Zhengping ; Shang, Yi ; Duan, Lixin ; Wang, Feng</creatorcontrib><description>(+)-Ambrein is the primary component of ambergris, a rare product found in sperm whales ( Physeter microcephalus ). Microbial production using sustainable resources is a promising way to replace animal extraction and chemical synthesis. We constructed an engineered yeast strain to produce (+)-ambrein de novo . Squalene is a substrate for the biosynthesis of (+)-ambrein. Firstly, strain LQ2, with a squalene yield of 384.4 mg/L was obtained by optimizing the mevalonate pathway. Then we engineered a method for the de novo production of (+)-ambrein using glucose as a carbon source by overexpressing codon-optimized tetraprenyl- β -curcumene cyclase (BmeTC) and its double mutant enzyme (BmeTC Y167A/D373C ), evaluating different promoters, knocking out GAL80 , and fusing the protein with BmeTC and squalene synthase (AtSQS2). Nevertheless, the synthesis of (+)-ambrein is still limited, causing low catalytic activity in BmeTC. We carried out a protein surface amino acid modification of BmeTC. The dominant mutant BmeTC K6A/Q9E/N454A for the first step was obtained to improve its catalytic activity. The yield of (+)-ambrein increased from 35.2 to 59.0 mg/L in the shake flask and finally reached 457.4 mg/L in the 2 L fermenter, the highest titer currently available for yeast. Efficiently engineered strains and inexpensive fermentation conditions for the industrial production of (+)-ambrein. The metabolic engineering tools provide directions for optimizing the biosynthesis of other high-value triterpenes.</description><identifier>ISSN: 0141-5492</identifier><identifier>ISSN: 1573-6776</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-024-03502-2</identifier><identifier>PMID: 38884886</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Ambergris ; Amino acids ; Applied Microbiology ; Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Carbon cycle ; Carbon sources ; Catalytic activity ; Chemical synthesis ; Fermentation ; Glucose ; Glucose - metabolism ; Industrial production ; Life Sciences ; Metabolic engineering ; Metabolic Engineering - methods ; Metabolism ; Mevalonate pathway ; Microbiology ; Microorganisms ; Mutants ; Original Research Paper ; Protein biosynthesis ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Squalene ; Squalene - metabolism ; Substrates ; Triterpenes ; Yeast ; Yeasts</subject><ispartof>Biotechnology letters, 2024-08, Vol.46 (4), p.615-626</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-d406344da86729ca2aea97f63c980618e19a5eeca6e70f589d8fd738b4e787a83</cites><orcidid>0000-0002-6249-8970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-024-03502-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-024-03502-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38884886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Chumin</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><creatorcontrib>Ji, Zhongju</creatorcontrib><creatorcontrib>Fan, Baolian</creatorcontrib><creatorcontrib>Chen, Yaman</creatorcontrib><creatorcontrib>Wu, Yuhong</creatorcontrib><creatorcontrib>Gan, Yuhong</creatorcontrib><creatorcontrib>Li, Zhengping</creatorcontrib><creatorcontrib>Shang, Yi</creatorcontrib><creatorcontrib>Duan, Lixin</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><title>Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>(+)-Ambrein is the primary component of ambergris, a rare product found in sperm whales ( Physeter microcephalus ). Microbial production using sustainable resources is a promising way to replace animal extraction and chemical synthesis. We constructed an engineered yeast strain to produce (+)-ambrein de novo . Squalene is a substrate for the biosynthesis of (+)-ambrein. Firstly, strain LQ2, with a squalene yield of 384.4 mg/L was obtained by optimizing the mevalonate pathway. Then we engineered a method for the de novo production of (+)-ambrein using glucose as a carbon source by overexpressing codon-optimized tetraprenyl- β -curcumene cyclase (BmeTC) and its double mutant enzyme (BmeTC Y167A/D373C ), evaluating different promoters, knocking out GAL80 , and fusing the protein with BmeTC and squalene synthase (AtSQS2). Nevertheless, the synthesis of (+)-ambrein is still limited, causing low catalytic activity in BmeTC. We carried out a protein surface amino acid modification of BmeTC. The dominant mutant BmeTC K6A/Q9E/N454A for the first step was obtained to improve its catalytic activity. The yield of (+)-ambrein increased from 35.2 to 59.0 mg/L in the shake flask and finally reached 457.4 mg/L in the 2 L fermenter, the highest titer currently available for yeast. Efficiently engineered strains and inexpensive fermentation conditions for the industrial production of (+)-ambrein. The metabolic engineering tools provide directions for optimizing the biosynthesis of other high-value triterpenes.</description><subject>Ambergris</subject><subject>Amino acids</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Carbon cycle</subject><subject>Carbon sources</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Fermentation</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Industrial production</subject><subject>Life Sciences</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolism</subject><subject>Mevalonate pathway</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Mutants</subject><subject>Original Research Paper</subject><subject>Protein biosynthesis</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Squalene</subject><subject>Squalene - metabolism</subject><subject>Substrates</subject><subject>Triterpenes</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0141-5492</issn><issn>1573-6776</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFDEUhYMoTjv6B1xIwM2IRG8elcdyGHzBiAt1HdKpW9UZqipt0jUw_960PSq4cHU33zn3cA4hzzm84QDmbeXQCcdAKAayA8HEA7LhnZFMG6Mfkg1wxVmnnDgjT2q9AQBnwDwmZ9Jaq6zVGzJ-xkPY5ilFisuYFsSSlpHmgX4NMe5CyfNdxEojFrxNNQWkQy50l8Ydm_AWJ7ovuV_jIeXlqLp4_YqFeVswLXRoYjpOa8wVn5JHQ5gqPru_5-T7-3ffrj6y6y8fPl1dXrMoOn1gvQItleqD1Ua4GETA4MygZXQWNLfIXegQY9BoYOis6-3QG2m3Co01wcpzcnHybbF-rFgPfk414jSFBfNavQTtuOm0cQ19-Q96k9eytHSNMkpIBa5rlDhRseRaCw5-X9Icyp3n4I8z-NMMvs3gf83gRRO9uLdetzP2fyS_e2-APAF1f-wby9_f_7H9CS68krM</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lin, Chumin</creator><creator>Zhang, Xiaopeng</creator><creator>Ji, Zhongju</creator><creator>Fan, Baolian</creator><creator>Chen, Yaman</creator><creator>Wu, Yuhong</creator><creator>Gan, Yuhong</creator><creator>Li, Zhengping</creator><creator>Shang, Yi</creator><creator>Duan, Lixin</creator><creator>Wang, Feng</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>L7M</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6249-8970</orcidid></search><sort><creationdate>20240801</creationdate><title>Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose</title><author>Lin, Chumin ; Zhang, Xiaopeng ; Ji, Zhongju ; Fan, Baolian ; Chen, Yaman ; Wu, Yuhong ; Gan, Yuhong ; Li, Zhengping ; Shang, Yi ; Duan, Lixin ; Wang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-d406344da86729ca2aea97f63c980618e19a5eeca6e70f589d8fd738b4e787a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambergris</topic><topic>Amino acids</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Carbon cycle</topic><topic>Carbon sources</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Fermentation</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Industrial production</topic><topic>Life Sciences</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolism</topic><topic>Mevalonate pathway</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Mutants</topic><topic>Original Research Paper</topic><topic>Protein biosynthesis</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Squalene</topic><topic>Squalene - metabolism</topic><topic>Substrates</topic><topic>Triterpenes</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Chumin</creatorcontrib><creatorcontrib>Zhang, Xiaopeng</creatorcontrib><creatorcontrib>Ji, Zhongju</creatorcontrib><creatorcontrib>Fan, Baolian</creatorcontrib><creatorcontrib>Chen, Yaman</creatorcontrib><creatorcontrib>Wu, Yuhong</creatorcontrib><creatorcontrib>Gan, Yuhong</creatorcontrib><creatorcontrib>Li, Zhengping</creatorcontrib><creatorcontrib>Shang, Yi</creatorcontrib><creatorcontrib>Duan, Lixin</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Chumin</au><au>Zhang, Xiaopeng</au><au>Ji, Zhongju</au><au>Fan, Baolian</au><au>Chen, Yaman</au><au>Wu, Yuhong</au><au>Gan, Yuhong</au><au>Li, Zhengping</au><au>Shang, Yi</au><au>Duan, Lixin</au><au>Wang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>46</volume><issue>4</issue><spage>615</spage><epage>626</epage><pages>615-626</pages><issn>0141-5492</issn><issn>1573-6776</issn><eissn>1573-6776</eissn><abstract>(+)-Ambrein is the primary component of ambergris, a rare product found in sperm whales ( Physeter microcephalus ). Microbial production using sustainable resources is a promising way to replace animal extraction and chemical synthesis. We constructed an engineered yeast strain to produce (+)-ambrein de novo . Squalene is a substrate for the biosynthesis of (+)-ambrein. Firstly, strain LQ2, with a squalene yield of 384.4 mg/L was obtained by optimizing the mevalonate pathway. Then we engineered a method for the de novo production of (+)-ambrein using glucose as a carbon source by overexpressing codon-optimized tetraprenyl- β -curcumene cyclase (BmeTC) and its double mutant enzyme (BmeTC Y167A/D373C ), evaluating different promoters, knocking out GAL80 , and fusing the protein with BmeTC and squalene synthase (AtSQS2). Nevertheless, the synthesis of (+)-ambrein is still limited, causing low catalytic activity in BmeTC. We carried out a protein surface amino acid modification of BmeTC. The dominant mutant BmeTC K6A/Q9E/N454A for the first step was obtained to improve its catalytic activity. The yield of (+)-ambrein increased from 35.2 to 59.0 mg/L in the shake flask and finally reached 457.4 mg/L in the 2 L fermenter, the highest titer currently available for yeast. Efficiently engineered strains and inexpensive fermentation conditions for the industrial production of (+)-ambrein. The metabolic engineering tools provide directions for optimizing the biosynthesis of other high-value triterpenes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38884886</pmid><doi>10.1007/s10529-024-03502-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6249-8970</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-5492
ispartof Biotechnology letters, 2024-08, Vol.46 (4), p.615-626
issn 0141-5492
1573-6776
1573-6776
language eng
recordid cdi_proquest_miscellaneous_3069175679
source MEDLINE; SpringerNature Journals
subjects Ambergris
Amino acids
Applied Microbiology
Biochemistry
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Carbon cycle
Carbon sources
Catalytic activity
Chemical synthesis
Fermentation
Glucose
Glucose - metabolism
Industrial production
Life Sciences
Metabolic engineering
Metabolic Engineering - methods
Metabolism
Mevalonate pathway
Microbiology
Microorganisms
Mutants
Original Research Paper
Protein biosynthesis
Proteins
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Squalene
Squalene - metabolism
Substrates
Triterpenes
Yeast
Yeasts
title Metabolic engineering of Saccharomyces cerevisiae for high-level production of (+)-ambrein from glucose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Saccharomyces%20cerevisiae%20for%20high-level%20production%20of%20(+)-ambrein%20from%20glucose&rft.jtitle=Biotechnology%20letters&rft.au=Lin,%20Chumin&rft.date=2024-08-01&rft.volume=46&rft.issue=4&rft.spage=615&rft.epage=626&rft.pages=615-626&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-024-03502-2&rft_dat=%3Cproquest_cross%3E3074234095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074234095&rft_id=info:pmid/38884886&rfr_iscdi=true