Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis
Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nan...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (42), p.e2402320-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | e2402320 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Sun, Yun Qin, Liting Yang, Yuhan Gao, Jingzhe Zhang, Yudi Wang, Hongyu Wu, Qingyuan Xu, Bolong Liu, Huiyu |
description | Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nanozyme is constructed through loading peroxide‐like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self‐cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME‐responsive nanozyme capable of H2O2 self‐supply and ion interference therapy, providing a paradigm for tumor‐specific nanozyme design.
An attractive hydrogen peroxide (H2O2) self‐supplying nanozyme is developed, ZnO2@Pt. ZnO2 supplies H2O2 and Zn2+ in response to the tumor microenvironment, and platinum NPs catabolize H2O2 into highly toxic ROS via POD‐like activity, enabling self‐cascading catalytically enhanced chemodynamic therapy. Additionally, Zn2+ interferes with the energy supply pathway associated with tumor cell glycolysis, ultimately achieving effective tumor killing. |
doi_str_mv | 10.1002/smll.202402320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3069171648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069171648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3280-319946acf29b687322e4eeaa6d87838441b61b9a89a14d9e89e04d44a7bf263a3</originalsourceid><addsrcrecordid>eNqFkctqGzEUhkVIycXNNsswkE03dnSLRlqmpm0MLoHa2WQjzsycsRU0M47kocyuj9Bn7JNExokL3XT1C86nj8P5CblkdMIo5Tex8X7CKZeUC06PyBlTTIyV5ub48Gb0lJzH-EypYFzmJ-RUaK0ZvzVn5OXJteWfX78_Q8Qq-_GwyO6ajXe1wxCzZXCrFYZsCm25izU2XTW00LjyZta12azdYqgxYBpnyzUG2AwpQ9ev1tkCfZ3EU4glVJgcW_BDdPEj-VCDj3jxliPy-PXLcno_nj98m03v5uNScE3HghkjFZQ1N4XSueAcJSKAqnSuhZaSFYoVBrQBJiuD2iCVlZSQFzVXAsSIfNp7N6F76TFubeNiid5Di10fraDKsJwpqRN6_Q_63PWhTdtZwViutRLKJGqyp8rQxRiwtpvgGgiDZdTuyrC7MuyhjPTh6k3bFw1WB_z9-gkwe-Cn8zj8R2cX3-fzv_JXSzqXng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117886369</pqid></control><display><type>article</type><title>Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Yun ; Qin, Liting ; Yang, Yuhan ; Gao, Jingzhe ; Zhang, Yudi ; Wang, Hongyu ; Wu, Qingyuan ; Xu, Bolong ; Liu, Huiyu</creator><creatorcontrib>Sun, Yun ; Qin, Liting ; Yang, Yuhan ; Gao, Jingzhe ; Zhang, Yudi ; Wang, Hongyu ; Wu, Qingyuan ; Xu, Bolong ; Liu, Huiyu</creatorcontrib><description>Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nanozyme is constructed through loading peroxide‐like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self‐cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME‐responsive nanozyme capable of H2O2 self‐supply and ion interference therapy, providing a paradigm for tumor‐specific nanozyme design.
An attractive hydrogen peroxide (H2O2) self‐supplying nanozyme is developed, ZnO2@Pt. ZnO2 supplies H2O2 and Zn2+ in response to the tumor microenvironment, and platinum NPs catabolize H2O2 into highly toxic ROS via POD‐like activity, enabling self‐cascading catalytically enhanced chemodynamic therapy. Additionally, Zn2+ interferes with the energy supply pathway associated with tumor cell glycolysis, ultimately achieving effective tumor killing.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402320</identifier><identifier>PMID: 38881259</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acidic oxides ; Amplifiers ; Catalysis ; Catalytic activity ; catalytic therapy ; Glutathione ; Glycolysis ; glycolysis inhibition ; Hydrogen peroxide ; Hydroxyl radicals ; In vivo methods and tests ; ion interference ; metal peroxides ; Nanoparticles ; nanozymes ; Oxidative stress ; Platinum ; Therapy ; Tumors ; Zinc peroxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (42), p.e2402320-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3280-319946acf29b687322e4eeaa6d87838441b61b9a89a14d9e89e04d44a7bf263a3</cites><orcidid>0000-0003-4465-8501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38881259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yun</creatorcontrib><creatorcontrib>Qin, Liting</creatorcontrib><creatorcontrib>Yang, Yuhan</creatorcontrib><creatorcontrib>Gao, Jingzhe</creatorcontrib><creatorcontrib>Zhang, Yudi</creatorcontrib><creatorcontrib>Wang, Hongyu</creatorcontrib><creatorcontrib>Wu, Qingyuan</creatorcontrib><creatorcontrib>Xu, Bolong</creatorcontrib><creatorcontrib>Liu, Huiyu</creatorcontrib><title>Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nanozyme is constructed through loading peroxide‐like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self‐cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME‐responsive nanozyme capable of H2O2 self‐supply and ion interference therapy, providing a paradigm for tumor‐specific nanozyme design.
An attractive hydrogen peroxide (H2O2) self‐supplying nanozyme is developed, ZnO2@Pt. ZnO2 supplies H2O2 and Zn2+ in response to the tumor microenvironment, and platinum NPs catabolize H2O2 into highly toxic ROS via POD‐like activity, enabling self‐cascading catalytically enhanced chemodynamic therapy. Additionally, Zn2+ interferes with the energy supply pathway associated with tumor cell glycolysis, ultimately achieving effective tumor killing.</description><subject>Acidic oxides</subject><subject>Amplifiers</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>catalytic therapy</subject><subject>Glutathione</subject><subject>Glycolysis</subject><subject>glycolysis inhibition</subject><subject>Hydrogen peroxide</subject><subject>Hydroxyl radicals</subject><subject>In vivo methods and tests</subject><subject>ion interference</subject><subject>metal peroxides</subject><subject>Nanoparticles</subject><subject>nanozymes</subject><subject>Oxidative stress</subject><subject>Platinum</subject><subject>Therapy</subject><subject>Tumors</subject><subject>Zinc peroxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctqGzEUhkVIycXNNsswkE03dnSLRlqmpm0MLoHa2WQjzsycsRU0M47kocyuj9Bn7JNExokL3XT1C86nj8P5CblkdMIo5Tex8X7CKZeUC06PyBlTTIyV5ub48Gb0lJzH-EypYFzmJ-RUaK0ZvzVn5OXJteWfX78_Q8Qq-_GwyO6ajXe1wxCzZXCrFYZsCm25izU2XTW00LjyZta12azdYqgxYBpnyzUG2AwpQ9ev1tkCfZ3EU4glVJgcW_BDdPEj-VCDj3jxliPy-PXLcno_nj98m03v5uNScE3HghkjFZQ1N4XSueAcJSKAqnSuhZaSFYoVBrQBJiuD2iCVlZSQFzVXAsSIfNp7N6F76TFubeNiid5Di10fraDKsJwpqRN6_Q_63PWhTdtZwViutRLKJGqyp8rQxRiwtpvgGgiDZdTuyrC7MuyhjPTh6k3bFw1WB_z9-gkwe-Cn8zj8R2cX3-fzv_JXSzqXng</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Sun, Yun</creator><creator>Qin, Liting</creator><creator>Yang, Yuhan</creator><creator>Gao, Jingzhe</creator><creator>Zhang, Yudi</creator><creator>Wang, Hongyu</creator><creator>Wu, Qingyuan</creator><creator>Xu, Bolong</creator><creator>Liu, Huiyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4465-8501</orcidid></search><sort><creationdate>20241001</creationdate><title>Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis</title><author>Sun, Yun ; Qin, Liting ; Yang, Yuhan ; Gao, Jingzhe ; Zhang, Yudi ; Wang, Hongyu ; Wu, Qingyuan ; Xu, Bolong ; Liu, Huiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3280-319946acf29b687322e4eeaa6d87838441b61b9a89a14d9e89e04d44a7bf263a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic oxides</topic><topic>Amplifiers</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>catalytic therapy</topic><topic>Glutathione</topic><topic>Glycolysis</topic><topic>glycolysis inhibition</topic><topic>Hydrogen peroxide</topic><topic>Hydroxyl radicals</topic><topic>In vivo methods and tests</topic><topic>ion interference</topic><topic>metal peroxides</topic><topic>Nanoparticles</topic><topic>nanozymes</topic><topic>Oxidative stress</topic><topic>Platinum</topic><topic>Therapy</topic><topic>Tumors</topic><topic>Zinc peroxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yun</creatorcontrib><creatorcontrib>Qin, Liting</creatorcontrib><creatorcontrib>Yang, Yuhan</creatorcontrib><creatorcontrib>Gao, Jingzhe</creatorcontrib><creatorcontrib>Zhang, Yudi</creatorcontrib><creatorcontrib>Wang, Hongyu</creatorcontrib><creatorcontrib>Wu, Qingyuan</creatorcontrib><creatorcontrib>Xu, Bolong</creatorcontrib><creatorcontrib>Liu, Huiyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yun</au><au>Qin, Liting</au><au>Yang, Yuhan</au><au>Gao, Jingzhe</au><au>Zhang, Yudi</au><au>Wang, Hongyu</au><au>Wu, Qingyuan</au><au>Xu, Bolong</au><au>Liu, Huiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>20</volume><issue>42</issue><spage>e2402320</spage><epage>n/a</epage><pages>e2402320-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nanozyme is constructed through loading peroxide‐like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self‐cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME‐responsive nanozyme capable of H2O2 self‐supply and ion interference therapy, providing a paradigm for tumor‐specific nanozyme design.
An attractive hydrogen peroxide (H2O2) self‐supplying nanozyme is developed, ZnO2@Pt. ZnO2 supplies H2O2 and Zn2+ in response to the tumor microenvironment, and platinum NPs catabolize H2O2 into highly toxic ROS via POD‐like activity, enabling self‐cascading catalytically enhanced chemodynamic therapy. Additionally, Zn2+ interferes with the energy supply pathway associated with tumor cell glycolysis, ultimately achieving effective tumor killing.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38881259</pmid><doi>10.1002/smll.202402320</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4465-8501</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (42), p.e2402320-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_3069171648 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acidic oxides Amplifiers Catalysis Catalytic activity catalytic therapy Glutathione Glycolysis glycolysis inhibition Hydrogen peroxide Hydroxyl radicals In vivo methods and tests ion interference metal peroxides Nanoparticles nanozymes Oxidative stress Platinum Therapy Tumors Zinc peroxide |
title | Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%E2%80%90Based%20ROS%20Amplifiers%20Trigger%20Cancer%20Chemodynamic/Ion%20Interference%20Therapy%20Through%20Self%E2%80%90Cascade%20Catalysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sun,%20Yun&rft.date=2024-10-01&rft.volume=20&rft.issue=42&rft.spage=e2402320&rft.epage=n/a&rft.pages=e2402320-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402320&rft_dat=%3Cproquest_cross%3E3069171648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117886369&rft_id=info:pmid/38881259&rfr_iscdi=true |