Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis

Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-10, Vol.20 (42), p.e2402320-n/a
Hauptverfasser: Sun, Yun, Qin, Liting, Yang, Yuhan, Gao, Jingzhe, Zhang, Yudi, Wang, Hongyu, Wu, Qingyuan, Xu, Bolong, Liu, Huiyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page e2402320
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Sun, Yun
Qin, Liting
Yang, Yuhan
Gao, Jingzhe
Zhang, Yudi
Wang, Hongyu
Wu, Qingyuan
Xu, Bolong
Liu, Huiyu
description Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nanozyme is constructed through loading peroxide‐like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self‐cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME‐responsive nanozyme capable of H2O2 self‐supply and ion interference therapy, providing a paradigm for tumor‐specific nanozyme design. An attractive hydrogen peroxide (H2O2) self‐supplying nanozyme is developed, ZnO2@Pt. ZnO2 supplies H2O2 and Zn2+ in response to the tumor microenvironment, and platinum NPs catabolize H2O2 into highly toxic ROS via POD‐like activity, enabling self‐cascading catalytically enhanced chemodynamic therapy. Additionally, Zn2+ interferes with the energy supply pathway associated with tumor cell glycolysis, ultimately achieving effective tumor killing.
doi_str_mv 10.1002/smll.202402320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3069171648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3069171648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3280-319946acf29b687322e4eeaa6d87838441b61b9a89a14d9e89e04d44a7bf263a3</originalsourceid><addsrcrecordid>eNqFkctqGzEUhkVIycXNNsswkE03dnSLRlqmpm0MLoHa2WQjzsycsRU0M47kocyuj9Bn7JNExokL3XT1C86nj8P5CblkdMIo5Tex8X7CKZeUC06PyBlTTIyV5ub48Gb0lJzH-EypYFzmJ-RUaK0ZvzVn5OXJteWfX78_Q8Qq-_GwyO6ajXe1wxCzZXCrFYZsCm25izU2XTW00LjyZta12azdYqgxYBpnyzUG2AwpQ9ev1tkCfZ3EU4glVJgcW_BDdPEj-VCDj3jxliPy-PXLcno_nj98m03v5uNScE3HghkjFZQ1N4XSueAcJSKAqnSuhZaSFYoVBrQBJiuD2iCVlZSQFzVXAsSIfNp7N6F76TFubeNiid5Di10fraDKsJwpqRN6_Q_63PWhTdtZwViutRLKJGqyp8rQxRiwtpvgGgiDZdTuyrC7MuyhjPTh6k3bFw1WB_z9-gkwe-Cn8zj8R2cX3-fzv_JXSzqXng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117886369</pqid></control><display><type>article</type><title>Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Yun ; Qin, Liting ; Yang, Yuhan ; Gao, Jingzhe ; Zhang, Yudi ; Wang, Hongyu ; Wu, Qingyuan ; Xu, Bolong ; Liu, Huiyu</creator><creatorcontrib>Sun, Yun ; Qin, Liting ; Yang, Yuhan ; Gao, Jingzhe ; Zhang, Yudi ; Wang, Hongyu ; Wu, Qingyuan ; Xu, Bolong ; Liu, Huiyu</creatorcontrib><description>Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nanozyme is constructed through loading peroxide‐like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self‐cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME‐responsive nanozyme capable of H2O2 self‐supply and ion interference therapy, providing a paradigm for tumor‐specific nanozyme design. An attractive hydrogen peroxide (H2O2) self‐supplying nanozyme is developed, ZnO2@Pt. ZnO2 supplies H2O2 and Zn2+ in response to the tumor microenvironment, and platinum NPs catabolize H2O2 into highly toxic ROS via POD‐like activity, enabling self‐cascading catalytically enhanced chemodynamic therapy. Additionally, Zn2+ interferes with the energy supply pathway associated with tumor cell glycolysis, ultimately achieving effective tumor killing.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402320</identifier><identifier>PMID: 38881259</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acidic oxides ; Amplifiers ; Catalysis ; Catalytic activity ; catalytic therapy ; Glutathione ; Glycolysis ; glycolysis inhibition ; Hydrogen peroxide ; Hydroxyl radicals ; In vivo methods and tests ; ion interference ; metal peroxides ; Nanoparticles ; nanozymes ; Oxidative stress ; Platinum ; Therapy ; Tumors ; Zinc peroxide</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (42), p.e2402320-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3280-319946acf29b687322e4eeaa6d87838441b61b9a89a14d9e89e04d44a7bf263a3</cites><orcidid>0000-0003-4465-8501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38881259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yun</creatorcontrib><creatorcontrib>Qin, Liting</creatorcontrib><creatorcontrib>Yang, Yuhan</creatorcontrib><creatorcontrib>Gao, Jingzhe</creatorcontrib><creatorcontrib>Zhang, Yudi</creatorcontrib><creatorcontrib>Wang, Hongyu</creatorcontrib><creatorcontrib>Wu, Qingyuan</creatorcontrib><creatorcontrib>Xu, Bolong</creatorcontrib><creatorcontrib>Liu, Huiyu</creatorcontrib><title>Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nanozyme is constructed through loading peroxide‐like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self‐cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME‐responsive nanozyme capable of H2O2 self‐supply and ion interference therapy, providing a paradigm for tumor‐specific nanozyme design. An attractive hydrogen peroxide (H2O2) self‐supplying nanozyme is developed, ZnO2@Pt. ZnO2 supplies H2O2 and Zn2+ in response to the tumor microenvironment, and platinum NPs catabolize H2O2 into highly toxic ROS via POD‐like activity, enabling self‐cascading catalytically enhanced chemodynamic therapy. Additionally, Zn2+ interferes with the energy supply pathway associated with tumor cell glycolysis, ultimately achieving effective tumor killing.</description><subject>Acidic oxides</subject><subject>Amplifiers</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>catalytic therapy</subject><subject>Glutathione</subject><subject>Glycolysis</subject><subject>glycolysis inhibition</subject><subject>Hydrogen peroxide</subject><subject>Hydroxyl radicals</subject><subject>In vivo methods and tests</subject><subject>ion interference</subject><subject>metal peroxides</subject><subject>Nanoparticles</subject><subject>nanozymes</subject><subject>Oxidative stress</subject><subject>Platinum</subject><subject>Therapy</subject><subject>Tumors</subject><subject>Zinc peroxide</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctqGzEUhkVIycXNNsswkE03dnSLRlqmpm0MLoHa2WQjzsycsRU0M47kocyuj9Bn7JNExokL3XT1C86nj8P5CblkdMIo5Tex8X7CKZeUC06PyBlTTIyV5ub48Gb0lJzH-EypYFzmJ-RUaK0ZvzVn5OXJteWfX78_Q8Qq-_GwyO6ajXe1wxCzZXCrFYZsCm25izU2XTW00LjyZta12azdYqgxYBpnyzUG2AwpQ9ev1tkCfZ3EU4glVJgcW_BDdPEj-VCDj3jxliPy-PXLcno_nj98m03v5uNScE3HghkjFZQ1N4XSueAcJSKAqnSuhZaSFYoVBrQBJiuD2iCVlZSQFzVXAsSIfNp7N6F76TFubeNiid5Di10fraDKsJwpqRN6_Q_63PWhTdtZwViutRLKJGqyp8rQxRiwtpvgGgiDZdTuyrC7MuyhjPTh6k3bFw1WB_z9-gkwe-Cn8zj8R2cX3-fzv_JXSzqXng</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Sun, Yun</creator><creator>Qin, Liting</creator><creator>Yang, Yuhan</creator><creator>Gao, Jingzhe</creator><creator>Zhang, Yudi</creator><creator>Wang, Hongyu</creator><creator>Wu, Qingyuan</creator><creator>Xu, Bolong</creator><creator>Liu, Huiyu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4465-8501</orcidid></search><sort><creationdate>20241001</creationdate><title>Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis</title><author>Sun, Yun ; Qin, Liting ; Yang, Yuhan ; Gao, Jingzhe ; Zhang, Yudi ; Wang, Hongyu ; Wu, Qingyuan ; Xu, Bolong ; Liu, Huiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3280-319946acf29b687322e4eeaa6d87838441b61b9a89a14d9e89e04d44a7bf263a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic oxides</topic><topic>Amplifiers</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>catalytic therapy</topic><topic>Glutathione</topic><topic>Glycolysis</topic><topic>glycolysis inhibition</topic><topic>Hydrogen peroxide</topic><topic>Hydroxyl radicals</topic><topic>In vivo methods and tests</topic><topic>ion interference</topic><topic>metal peroxides</topic><topic>Nanoparticles</topic><topic>nanozymes</topic><topic>Oxidative stress</topic><topic>Platinum</topic><topic>Therapy</topic><topic>Tumors</topic><topic>Zinc peroxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yun</creatorcontrib><creatorcontrib>Qin, Liting</creatorcontrib><creatorcontrib>Yang, Yuhan</creatorcontrib><creatorcontrib>Gao, Jingzhe</creatorcontrib><creatorcontrib>Zhang, Yudi</creatorcontrib><creatorcontrib>Wang, Hongyu</creatorcontrib><creatorcontrib>Wu, Qingyuan</creatorcontrib><creatorcontrib>Xu, Bolong</creatorcontrib><creatorcontrib>Liu, Huiyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yun</au><au>Qin, Liting</au><au>Yang, Yuhan</au><au>Gao, Jingzhe</au><au>Zhang, Yudi</au><au>Wang, Hongyu</au><au>Wu, Qingyuan</au><au>Xu, Bolong</au><au>Liu, Huiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>20</volume><issue>42</issue><spage>e2402320</spage><epage>n/a</epage><pages>e2402320-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Nanozyme‐mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self‐supplying nanozyme is constructed through loading peroxide‐like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self‐cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME‐responsive nanozyme capable of H2O2 self‐supply and ion interference therapy, providing a paradigm for tumor‐specific nanozyme design. An attractive hydrogen peroxide (H2O2) self‐supplying nanozyme is developed, ZnO2@Pt. ZnO2 supplies H2O2 and Zn2+ in response to the tumor microenvironment, and platinum NPs catabolize H2O2 into highly toxic ROS via POD‐like activity, enabling self‐cascading catalytically enhanced chemodynamic therapy. Additionally, Zn2+ interferes with the energy supply pathway associated with tumor cell glycolysis, ultimately achieving effective tumor killing.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38881259</pmid><doi>10.1002/smll.202402320</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4465-8501</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-10, Vol.20 (42), p.e2402320-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3069171648
source Wiley Online Library Journals Frontfile Complete
subjects Acidic oxides
Amplifiers
Catalysis
Catalytic activity
catalytic therapy
Glutathione
Glycolysis
glycolysis inhibition
Hydrogen peroxide
Hydroxyl radicals
In vivo methods and tests
ion interference
metal peroxides
Nanoparticles
nanozymes
Oxidative stress
Platinum
Therapy
Tumors
Zinc peroxide
title Zinc‐Based ROS Amplifiers Trigger Cancer Chemodynamic/Ion Interference Therapy Through Self‐Cascade Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%E2%80%90Based%20ROS%20Amplifiers%20Trigger%20Cancer%20Chemodynamic/Ion%20Interference%20Therapy%20Through%20Self%E2%80%90Cascade%20Catalysis&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sun,%20Yun&rft.date=2024-10-01&rft.volume=20&rft.issue=42&rft.spage=e2402320&rft.epage=n/a&rft.pages=e2402320-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402320&rft_dat=%3Cproquest_cross%3E3069171648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117886369&rft_id=info:pmid/38881259&rfr_iscdi=true