Unsupervised Learning‐Based Measurement of Ultrasonic Axial Transmission Velocity in Neonatal Bone

Objectives To develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health. Methods This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ultrasound in medicine 2024-09, Vol.43 (9), p.1711-1722
Hauptverfasser: Li, Qing, Tran, Tho N. H. T., Guo, Jialin, Li, Boyi, Xu, Kailiang, Le, Lawrence H., Ta, Dean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1722
container_issue 9
container_start_page 1711
container_title Journal of ultrasound in medicine
container_volume 43
creator Li, Qing
Tran, Tho N. H. T.
Guo, Jialin
Li, Boyi
Xu, Kailiang
Le, Lawrence H.
Ta, Dean
description Objectives To develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health. Methods This study presents an unsupervised learning approach for the automatic detection of first arrival time and estimation of ultrasonic velocity from axial transmission waveforms, which potentially indicates bone quality. The proposed method combines the ReliefF algorithm and fuzzy C‐means clustering. It was first validated using an in vitro dataset measured from a Sawbones phantom. It was subsequently applied on in vivo signals collected from 40 infants, comprising 21 males and 19 females. The extracted neonatal ultrasonic velocity was subjected to statistical analysis to explore correlations with the infants' anthropometric features and biochemical indicators. Results The results of in vivo data analysis revealed significant correlations between the extracted ultrasonic velocity and the neonatal anthropometric measurements and biochemical markers. The velocity of first arrival signals showed good associations with body weight (ρ = 0.583, P value
doi_str_mv 10.1002/jum.16505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068759017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068759017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2855-a70c3841bf029598bf8b0471d7970510daebf30c350d7f1b98e7154a973340b33</originalsourceid><addsrcrecordid>eNp10L1OwzAUhmELgaD8DNwAyghD2uM4rp0RKn5VYKGskZOcIKPELnYCdOMSuEauBJcWNiZL1qNPRy8hhxSGFCAZPfftkI458A0yoJxDnI0p2yQDSISM0yQTO2TX--dAgYp0m-wwKQUTkAxINTO-n6N71R6raIrKGW2evj4-z9Ty4xaV7x22aLrI1tGs6Zzy1ugyOn3XqokenDK-1d5ra6JHbGypu0WkTXSH1qguiDNrcJ9s1arxeLB-98js4vxhchVP7y-vJ6fTuEwk57ESUDKZ0qKGJOOZLGpZQCpoJTIBnEKlsKhZMBwqUdMikygoT1UmGEuhYGyPHK92586-9Oi7PJxWYtMog7b3OYOxFDwLEQI9WdHSWe8d1vnc6Va5RU4hX0bNQ9T8J2qwR-vZvmix-pO_FQMYrcCbbnDx_1J-M7tdTX4DU8yCDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068759017</pqid></control><display><type>article</type><title>Unsupervised Learning‐Based Measurement of Ultrasonic Axial Transmission Velocity in Neonatal Bone</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Qing ; Tran, Tho N. H. T. ; Guo, Jialin ; Li, Boyi ; Xu, Kailiang ; Le, Lawrence H. ; Ta, Dean</creator><creatorcontrib>Li, Qing ; Tran, Tho N. H. T. ; Guo, Jialin ; Li, Boyi ; Xu, Kailiang ; Le, Lawrence H. ; Ta, Dean</creatorcontrib><description>Objectives To develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health. Methods This study presents an unsupervised learning approach for the automatic detection of first arrival time and estimation of ultrasonic velocity from axial transmission waveforms, which potentially indicates bone quality. The proposed method combines the ReliefF algorithm and fuzzy C‐means clustering. It was first validated using an in vitro dataset measured from a Sawbones phantom. It was subsequently applied on in vivo signals collected from 40 infants, comprising 21 males and 19 females. The extracted neonatal ultrasonic velocity was subjected to statistical analysis to explore correlations with the infants' anthropometric features and biochemical indicators. Results The results of in vivo data analysis revealed significant correlations between the extracted ultrasonic velocity and the neonatal anthropometric measurements and biochemical markers. The velocity of first arrival signals showed good associations with body weight (ρ = 0.583, P value &lt;.001), body length (ρ = 0.583, P value &lt;.001), and gestational age (ρ = 0.557, P value &lt;.001). Conclusion These findings suggest that fuzzy C‐means clustering is highly effective in extracting ultrasonic propagating velocity in bone and reliably applicable in in vivo measurement. This work is a preliminary study that holds promise in advancing the development of a standardized ultrasonic tool for assessing neonatal bone health. Such advancements are crucial in the accurate diagnosis of bone growth disorders.</description><identifier>ISSN: 0278-4297</identifier><identifier>ISSN: 1550-9613</identifier><identifier>EISSN: 1550-9613</identifier><identifier>DOI: 10.1002/jum.16505</identifier><identifier>PMID: 38873702</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; axial transmission ; bone quantitative ultrasound ; Female ; fuzzy C‐means clustering ; Humans ; Infant, Newborn ; Male ; Phantoms, Imaging ; ReliefF algorithm ; Reproducibility of Results ; speed of sound ; Tibia - diagnostic imaging ; Tibia - physiology ; Ultrasonography - methods ; Unsupervised Machine Learning</subject><ispartof>Journal of ultrasound in medicine, 2024-09, Vol.43 (9), p.1711-1722</ispartof><rights>2024 American Institute of Ultrasound in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2855-a70c3841bf029598bf8b0471d7970510daebf30c350d7f1b98e7154a973340b33</cites><orcidid>0000-0002-1269-1166</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjum.16505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjum.16505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38873702$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Tran, Tho N. H. T.</creatorcontrib><creatorcontrib>Guo, Jialin</creatorcontrib><creatorcontrib>Li, Boyi</creatorcontrib><creatorcontrib>Xu, Kailiang</creatorcontrib><creatorcontrib>Le, Lawrence H.</creatorcontrib><creatorcontrib>Ta, Dean</creatorcontrib><title>Unsupervised Learning‐Based Measurement of Ultrasonic Axial Transmission Velocity in Neonatal Bone</title><title>Journal of ultrasound in medicine</title><addtitle>J Ultrasound Med</addtitle><description>Objectives To develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health. Methods This study presents an unsupervised learning approach for the automatic detection of first arrival time and estimation of ultrasonic velocity from axial transmission waveforms, which potentially indicates bone quality. The proposed method combines the ReliefF algorithm and fuzzy C‐means clustering. It was first validated using an in vitro dataset measured from a Sawbones phantom. It was subsequently applied on in vivo signals collected from 40 infants, comprising 21 males and 19 females. The extracted neonatal ultrasonic velocity was subjected to statistical analysis to explore correlations with the infants' anthropometric features and biochemical indicators. Results The results of in vivo data analysis revealed significant correlations between the extracted ultrasonic velocity and the neonatal anthropometric measurements and biochemical markers. The velocity of first arrival signals showed good associations with body weight (ρ = 0.583, P value &lt;.001), body length (ρ = 0.583, P value &lt;.001), and gestational age (ρ = 0.557, P value &lt;.001). Conclusion These findings suggest that fuzzy C‐means clustering is highly effective in extracting ultrasonic propagating velocity in bone and reliably applicable in in vivo measurement. This work is a preliminary study that holds promise in advancing the development of a standardized ultrasonic tool for assessing neonatal bone health. Such advancements are crucial in the accurate diagnosis of bone growth disorders.</description><subject>Algorithms</subject><subject>axial transmission</subject><subject>bone quantitative ultrasound</subject><subject>Female</subject><subject>fuzzy C‐means clustering</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Male</subject><subject>Phantoms, Imaging</subject><subject>ReliefF algorithm</subject><subject>Reproducibility of Results</subject><subject>speed of sound</subject><subject>Tibia - diagnostic imaging</subject><subject>Tibia - physiology</subject><subject>Ultrasonography - methods</subject><subject>Unsupervised Machine Learning</subject><issn>0278-4297</issn><issn>1550-9613</issn><issn>1550-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10L1OwzAUhmELgaD8DNwAyghD2uM4rp0RKn5VYKGskZOcIKPELnYCdOMSuEauBJcWNiZL1qNPRy8hhxSGFCAZPfftkI458A0yoJxDnI0p2yQDSISM0yQTO2TX--dAgYp0m-wwKQUTkAxINTO-n6N71R6raIrKGW2evj4-z9Ty4xaV7x22aLrI1tGs6Zzy1ugyOn3XqokenDK-1d5ra6JHbGypu0WkTXSH1qguiDNrcJ9s1arxeLB-98js4vxhchVP7y-vJ6fTuEwk57ESUDKZ0qKGJOOZLGpZQCpoJTIBnEKlsKhZMBwqUdMikygoT1UmGEuhYGyPHK92586-9Oi7PJxWYtMog7b3OYOxFDwLEQI9WdHSWe8d1vnc6Va5RU4hX0bNQ9T8J2qwR-vZvmix-pO_FQMYrcCbbnDx_1J-M7tdTX4DU8yCDQ</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Li, Qing</creator><creator>Tran, Tho N. H. T.</creator><creator>Guo, Jialin</creator><creator>Li, Boyi</creator><creator>Xu, Kailiang</creator><creator>Le, Lawrence H.</creator><creator>Ta, Dean</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1269-1166</orcidid></search><sort><creationdate>202409</creationdate><title>Unsupervised Learning‐Based Measurement of Ultrasonic Axial Transmission Velocity in Neonatal Bone</title><author>Li, Qing ; Tran, Tho N. H. T. ; Guo, Jialin ; Li, Boyi ; Xu, Kailiang ; Le, Lawrence H. ; Ta, Dean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2855-a70c3841bf029598bf8b0471d7970510daebf30c350d7f1b98e7154a973340b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>axial transmission</topic><topic>bone quantitative ultrasound</topic><topic>Female</topic><topic>fuzzy C‐means clustering</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Male</topic><topic>Phantoms, Imaging</topic><topic>ReliefF algorithm</topic><topic>Reproducibility of Results</topic><topic>speed of sound</topic><topic>Tibia - diagnostic imaging</topic><topic>Tibia - physiology</topic><topic>Ultrasonography - methods</topic><topic>Unsupervised Machine Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Tran, Tho N. H. T.</creatorcontrib><creatorcontrib>Guo, Jialin</creatorcontrib><creatorcontrib>Li, Boyi</creatorcontrib><creatorcontrib>Xu, Kailiang</creatorcontrib><creatorcontrib>Le, Lawrence H.</creatorcontrib><creatorcontrib>Ta, Dean</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of ultrasound in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qing</au><au>Tran, Tho N. H. T.</au><au>Guo, Jialin</au><au>Li, Boyi</au><au>Xu, Kailiang</au><au>Le, Lawrence H.</au><au>Ta, Dean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Learning‐Based Measurement of Ultrasonic Axial Transmission Velocity in Neonatal Bone</atitle><jtitle>Journal of ultrasound in medicine</jtitle><addtitle>J Ultrasound Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>43</volume><issue>9</issue><spage>1711</spage><epage>1722</epage><pages>1711-1722</pages><issn>0278-4297</issn><issn>1550-9613</issn><eissn>1550-9613</eissn><abstract>Objectives To develop a robust algorithm for estimating ultrasonic axial transmission velocity from neonatal tibial bone, and to investigate the relationships between ultrasound velocity and neonatal anthropometric measurements as well as clinical biochemical markers of skeletal health. Methods This study presents an unsupervised learning approach for the automatic detection of first arrival time and estimation of ultrasonic velocity from axial transmission waveforms, which potentially indicates bone quality. The proposed method combines the ReliefF algorithm and fuzzy C‐means clustering. It was first validated using an in vitro dataset measured from a Sawbones phantom. It was subsequently applied on in vivo signals collected from 40 infants, comprising 21 males and 19 females. The extracted neonatal ultrasonic velocity was subjected to statistical analysis to explore correlations with the infants' anthropometric features and biochemical indicators. Results The results of in vivo data analysis revealed significant correlations between the extracted ultrasonic velocity and the neonatal anthropometric measurements and biochemical markers. The velocity of first arrival signals showed good associations with body weight (ρ = 0.583, P value &lt;.001), body length (ρ = 0.583, P value &lt;.001), and gestational age (ρ = 0.557, P value &lt;.001). Conclusion These findings suggest that fuzzy C‐means clustering is highly effective in extracting ultrasonic propagating velocity in bone and reliably applicable in in vivo measurement. This work is a preliminary study that holds promise in advancing the development of a standardized ultrasonic tool for assessing neonatal bone health. Such advancements are crucial in the accurate diagnosis of bone growth disorders.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38873702</pmid><doi>10.1002/jum.16505</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1269-1166</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-4297
ispartof Journal of ultrasound in medicine, 2024-09, Vol.43 (9), p.1711-1722
issn 0278-4297
1550-9613
1550-9613
language eng
recordid cdi_proquest_miscellaneous_3068759017
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
axial transmission
bone quantitative ultrasound
Female
fuzzy C‐means clustering
Humans
Infant, Newborn
Male
Phantoms, Imaging
ReliefF algorithm
Reproducibility of Results
speed of sound
Tibia - diagnostic imaging
Tibia - physiology
Ultrasonography - methods
Unsupervised Machine Learning
title Unsupervised Learning‐Based Measurement of Ultrasonic Axial Transmission Velocity in Neonatal Bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Learning%E2%80%90Based%20Measurement%20of%20Ultrasonic%20Axial%20Transmission%20Velocity%20in%20Neonatal%20Bone&rft.jtitle=Journal%20of%20ultrasound%20in%20medicine&rft.au=Li,%20Qing&rft.date=2024-09&rft.volume=43&rft.issue=9&rft.spage=1711&rft.epage=1722&rft.pages=1711-1722&rft.issn=0278-4297&rft.eissn=1550-9613&rft_id=info:doi/10.1002/jum.16505&rft_dat=%3Cproquest_cross%3E3068759017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068759017&rft_id=info:pmid/38873702&rfr_iscdi=true