Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway

Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phytotherapy research 2024-08, Vol.38 (8), p.4022-4035
Hauptverfasser: Zheng, Sheng, Hu, Guanyu, Zheng, Jia, Li, Yikai, Li, Junhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4035
container_issue 8
container_start_page 4022
container_title Phytotherapy research
container_volume 38
creator Zheng, Sheng
Hu, Guanyu
Zheng, Jia
Li, Yikai
Li, Junhua
description Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis‐related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy‐induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up‐regulated the expression of angiogenic‐related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis–angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/β‐catenin pathway. Subsequently, using ovariectomy‐induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H‐positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.
doi_str_mv 10.1002/ptr.8267
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068758971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068758971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3437-44f53125d4ff620afafc67b53c141097a641aac036c9053612feaf0ccb25b0573</originalsourceid><addsrcrecordid>eNqFkd1qFDEYhkNR2rUWegUS8MSTafM7mRzq4h9UKlrRsyGTTXZTZpMxyVj2rJdQ6J30QryIXonZ3f6AIB4lged7wve-ABxidIQRIsdDjkcNqcUOmGAkZYW5oE_ABEmOK4abH3vgWUrnCCFJENsFe7RpBBWUT8DVacqL0BuotDa9iSqbBEPKJgwhhuw0tFHpPEYDF0b1zs9ht4LOz0a9vueF2dJz401y6fbyWvm5u39CHcZhMxQsfPPp6zTBX05tpr77fPz75vbySpcvvfNwUHlxoVbPwVOr-mQO7s598O3d27Pph-rk9P3H6euTSlNGRcWY5RQTPmPW1gQpq6yuRcepxqxEIFTNsFIa0VpLxGmNiTXKIq07wjtU4tkHr7beIYafo0m5XbpUIuiVN2FMLcWcCkYob_6PoroRvJECF_TlX-h5GKMvixRKEiKZRPRRqGNIKRrbDtEtVVy1GLXrQttSaLsutKAv7oRjtzSzB_C-wQJUW-DC9Wb1T1H7-ezLRvgHIwuubA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092294903</pqid></control><display><type>article</type><title>Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Sheng ; Hu, Guanyu ; Zheng, Jia ; Li, Yikai ; Li, Junhua</creator><creatorcontrib>Zheng, Sheng ; Hu, Guanyu ; Zheng, Jia ; Li, Yikai ; Li, Junhua</creatorcontrib><description>Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis‐related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy‐induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up‐regulated the expression of angiogenic‐related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis–angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/β‐catenin pathway. Subsequently, using ovariectomy‐induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H‐positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.</description><identifier>ISSN: 0951-418X</identifier><identifier>ISSN: 1099-1573</identifier><identifier>EISSN: 1099-1573</identifier><identifier>DOI: 10.1002/ptr.8267</identifier><identifier>PMID: 38873735</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Angiogenesis ; animal models ; Animals ; beta Catenin - metabolism ; bone formation ; bone fractures ; Bone growth ; Bone healing ; Bone marrow ; bone marrow mesenchymal stem cells ; Catenin ; Coumarin ; Coumarins - pharmacology ; Disease Models, Animal ; drugs ; Endothelial cells ; Female ; Fluorescence ; Fracture Healing - drug effects ; Fractures ; Healing ; Histology ; Human performance ; Human Umbilical Vein Endothelial Cells - drug effects ; Humans ; Labelling ; Mesenchymal stem cells ; Mesenchymal Stem Cells - drug effects ; Molecular modelling ; Neovascularization, Physiologic - drug effects ; Oophorectomy ; Osteogenesis ; Osteogenesis - drug effects ; osteogenesis–angiogenesis coupling ; Osteoporosis ; Osteoporosis - drug therapy ; osteoporotic fracture ; Osteoporotic Fractures - drug therapy ; osthole ; Ovariectomy ; phytotherapy ; placebos ; Radiography ; Rats ; Rats, Sprague-Dawley ; Stem cells ; Tibia ; Umbilical vein ; Wnt protein ; Wnt Signaling Pathway - drug effects ; Wnt/β‐catenin</subject><ispartof>Phytotherapy research, 2024-08, Vol.38 (8), p.4022-4035</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3437-44f53125d4ff620afafc67b53c141097a641aac036c9053612feaf0ccb25b0573</cites><orcidid>0000-0001-6525-8721 ; 0000-0003-0766-6051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fptr.8267$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fptr.8267$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38873735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Sheng</creatorcontrib><creatorcontrib>Hu, Guanyu</creatorcontrib><creatorcontrib>Zheng, Jia</creatorcontrib><creatorcontrib>Li, Yikai</creatorcontrib><creatorcontrib>Li, Junhua</creatorcontrib><title>Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway</title><title>Phytotherapy research</title><addtitle>Phytother Res</addtitle><description>Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis‐related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy‐induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up‐regulated the expression of angiogenic‐related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis–angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/β‐catenin pathway. Subsequently, using ovariectomy‐induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H‐positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.</description><subject>Angiogenesis</subject><subject>animal models</subject><subject>Animals</subject><subject>beta Catenin - metabolism</subject><subject>bone formation</subject><subject>bone fractures</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone marrow</subject><subject>bone marrow mesenchymal stem cells</subject><subject>Catenin</subject><subject>Coumarin</subject><subject>Coumarins - pharmacology</subject><subject>Disease Models, Animal</subject><subject>drugs</subject><subject>Endothelial cells</subject><subject>Female</subject><subject>Fluorescence</subject><subject>Fracture Healing - drug effects</subject><subject>Fractures</subject><subject>Healing</subject><subject>Histology</subject><subject>Human performance</subject><subject>Human Umbilical Vein Endothelial Cells - drug effects</subject><subject>Humans</subject><subject>Labelling</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - drug effects</subject><subject>Molecular modelling</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Oophorectomy</subject><subject>Osteogenesis</subject><subject>Osteogenesis - drug effects</subject><subject>osteogenesis–angiogenesis coupling</subject><subject>Osteoporosis</subject><subject>Osteoporosis - drug therapy</subject><subject>osteoporotic fracture</subject><subject>Osteoporotic Fractures - drug therapy</subject><subject>osthole</subject><subject>Ovariectomy</subject><subject>phytotherapy</subject><subject>placebos</subject><subject>Radiography</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stem cells</subject><subject>Tibia</subject><subject>Umbilical vein</subject><subject>Wnt protein</subject><subject>Wnt Signaling Pathway - drug effects</subject><subject>Wnt/β‐catenin</subject><issn>0951-418X</issn><issn>1099-1573</issn><issn>1099-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd1qFDEYhkNR2rUWegUS8MSTafM7mRzq4h9UKlrRsyGTTXZTZpMxyVj2rJdQ6J30QryIXonZ3f6AIB4lged7wve-ABxidIQRIsdDjkcNqcUOmGAkZYW5oE_ABEmOK4abH3vgWUrnCCFJENsFe7RpBBWUT8DVacqL0BuotDa9iSqbBEPKJgwhhuw0tFHpPEYDF0b1zs9ht4LOz0a9vueF2dJz401y6fbyWvm5u39CHcZhMxQsfPPp6zTBX05tpr77fPz75vbySpcvvfNwUHlxoVbPwVOr-mQO7s598O3d27Pph-rk9P3H6euTSlNGRcWY5RQTPmPW1gQpq6yuRcepxqxEIFTNsFIa0VpLxGmNiTXKIq07wjtU4tkHr7beIYafo0m5XbpUIuiVN2FMLcWcCkYob_6PoroRvJECF_TlX-h5GKMvixRKEiKZRPRRqGNIKRrbDtEtVVy1GLXrQttSaLsutKAv7oRjtzSzB_C-wQJUW-DC9Wb1T1H7-ezLRvgHIwuubA</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Zheng, Sheng</creator><creator>Hu, Guanyu</creator><creator>Zheng, Jia</creator><creator>Li, Yikai</creator><creator>Li, Junhua</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6525-8721</orcidid><orcidid>https://orcid.org/0000-0003-0766-6051</orcidid></search><sort><creationdate>202408</creationdate><title>Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway</title><author>Zheng, Sheng ; Hu, Guanyu ; Zheng, Jia ; Li, Yikai ; Li, Junhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3437-44f53125d4ff620afafc67b53c141097a641aac036c9053612feaf0ccb25b0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angiogenesis</topic><topic>animal models</topic><topic>Animals</topic><topic>beta Catenin - metabolism</topic><topic>bone formation</topic><topic>bone fractures</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone marrow</topic><topic>bone marrow mesenchymal stem cells</topic><topic>Catenin</topic><topic>Coumarin</topic><topic>Coumarins - pharmacology</topic><topic>Disease Models, Animal</topic><topic>drugs</topic><topic>Endothelial cells</topic><topic>Female</topic><topic>Fluorescence</topic><topic>Fracture Healing - drug effects</topic><topic>Fractures</topic><topic>Healing</topic><topic>Histology</topic><topic>Human performance</topic><topic>Human Umbilical Vein Endothelial Cells - drug effects</topic><topic>Humans</topic><topic>Labelling</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - drug effects</topic><topic>Molecular modelling</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Oophorectomy</topic><topic>Osteogenesis</topic><topic>Osteogenesis - drug effects</topic><topic>osteogenesis–angiogenesis coupling</topic><topic>Osteoporosis</topic><topic>Osteoporosis - drug therapy</topic><topic>osteoporotic fracture</topic><topic>Osteoporotic Fractures - drug therapy</topic><topic>osthole</topic><topic>Ovariectomy</topic><topic>phytotherapy</topic><topic>placebos</topic><topic>Radiography</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stem cells</topic><topic>Tibia</topic><topic>Umbilical vein</topic><topic>Wnt protein</topic><topic>Wnt Signaling Pathway - drug effects</topic><topic>Wnt/β‐catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Sheng</creatorcontrib><creatorcontrib>Hu, Guanyu</creatorcontrib><creatorcontrib>Zheng, Jia</creatorcontrib><creatorcontrib>Li, Yikai</creatorcontrib><creatorcontrib>Li, Junhua</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Phytotherapy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Sheng</au><au>Hu, Guanyu</au><au>Zheng, Jia</au><au>Li, Yikai</au><au>Li, Junhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway</atitle><jtitle>Phytotherapy research</jtitle><addtitle>Phytother Res</addtitle><date>2024-08</date><risdate>2024</risdate><volume>38</volume><issue>8</issue><spage>4022</spage><epage>4035</epage><pages>4022-4035</pages><issn>0951-418X</issn><issn>1099-1573</issn><eissn>1099-1573</eissn><abstract>Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis‐related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy‐induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up‐regulated the expression of angiogenic‐related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis–angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/β‐catenin pathway. Subsequently, using ovariectomy‐induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H‐positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>38873735</pmid><doi>10.1002/ptr.8267</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6525-8721</orcidid><orcidid>https://orcid.org/0000-0003-0766-6051</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0951-418X
ispartof Phytotherapy research, 2024-08, Vol.38 (8), p.4022-4035
issn 0951-418X
1099-1573
1099-1573
language eng
recordid cdi_proquest_miscellaneous_3068758971
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Angiogenesis
animal models
Animals
beta Catenin - metabolism
bone formation
bone fractures
Bone growth
Bone healing
Bone marrow
bone marrow mesenchymal stem cells
Catenin
Coumarin
Coumarins - pharmacology
Disease Models, Animal
drugs
Endothelial cells
Female
Fluorescence
Fracture Healing - drug effects
Fractures
Healing
Histology
Human performance
Human Umbilical Vein Endothelial Cells - drug effects
Humans
Labelling
Mesenchymal stem cells
Mesenchymal Stem Cells - drug effects
Molecular modelling
Neovascularization, Physiologic - drug effects
Oophorectomy
Osteogenesis
Osteogenesis - drug effects
osteogenesis–angiogenesis coupling
Osteoporosis
Osteoporosis - drug therapy
osteoporotic fracture
Osteoporotic Fractures - drug therapy
osthole
Ovariectomy
phytotherapy
placebos
Radiography
Rats
Rats, Sprague-Dawley
Stem cells
Tibia
Umbilical vein
Wnt protein
Wnt Signaling Pathway - drug effects
Wnt/β‐catenin
title Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis–angiogenesis coupling of BMSCs via the Wnt/β‐catenin pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osthole%20accelerates%20osteoporotic%20fracture%20healing%20by%20inducing%20the%20osteogenesis%E2%80%93angiogenesis%20coupling%20of%20BMSCs%20via%20the%20Wnt/%CE%B2%E2%80%90catenin%20pathway&rft.jtitle=Phytotherapy%20research&rft.au=Zheng,%20Sheng&rft.date=2024-08&rft.volume=38&rft.issue=8&rft.spage=4022&rft.epage=4035&rft.pages=4022-4035&rft.issn=0951-418X&rft.eissn=1099-1573&rft_id=info:doi/10.1002/ptr.8267&rft_dat=%3Cproquest_cross%3E3068758971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092294903&rft_id=info:pmid/38873735&rfr_iscdi=true