Mixed uncertainty analysis on pumping by peristaltic hearts using Dempster–Shafer theory
In this paper, we introduce the numerical strategy for mixed uncertainty propagation based on probability and Dempster–Shafer theories, and apply it to the computational model of peristalsis in a heart-pumping system. Specifically, the stochastic uncertainty in the system is represented with random...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2024-07, Vol.89 (1), p.13, Article 13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 13 |
container_title | Journal of mathematical biology |
container_volume | 89 |
creator | He, Yanyan Battista, Nicholas A. Waldrop, Lindsay D. |
description | In this paper, we introduce the numerical strategy for mixed uncertainty propagation based on probability and Dempster–Shafer theories, and apply it to the computational model of peristalsis in a heart-pumping system. Specifically, the stochastic uncertainty in the system is represented with random variables while epistemic uncertainty is represented using non-probabilistic uncertain variables with belief functions. The mixed uncertainty is propagated through the system, resulting in the uncertainty in the chosen quantities of interest (QoI, such as flow volume, cost of transport and work). With the introduced numerical method, the uncertainty in the statistics of QoIs will be represented using belief functions. With three representative probability distributions consistent with the belief structure, global sensitivity analysis has also been implemented to identify important uncertain factors and the results have been compared between different peristalsis models. To reduce the computational cost, physics constrained generalized polynomial chaos method is adopted to construct cheaper surrogates as approximations for the full simulation. |
doi_str_mv | 10.1007/s00285-024-02116-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068757688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068630890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-f79776ab8c2a26e4a5fba615630b13acae11b5b9fb288b62be869cfcae8aacd63</originalsourceid><addsrcrecordid>eNp9kL1OHDEQx60IFC4kL5ACWaJJs-CPW6-3REACEogC0qSxxr5ZbtF-YXulbMc75A15kviyF5AoKCxLnp__M_Mj5CtnR5yx4jgwJnSeMbFMh3OVqQ9kwZdSZHzJ1Q5ZMMlkpjQXe-RTCA-M8SIv-UeyJ7UuSp2zBfl1Xf_GFR07hz5C3cWJQgfNFOpA-44OYzvU3T21Ex3Q1yFCE2tH1wg-BjqGTe0M2yFE9M9Pf27XUKGncY29nz6T3QqagF-29z75-f387vQiu7r5cXl6cpU5KVTMqqIsCgVWOwFC4RLyyoLiuZLMcgkOkHOb27KyQmurhEWtSleldw3gVkruk29z7uD7xxFDNG0dHDYNdNiPwUimdJEXSuuEHr5BH_rRp31nKrXUJUuUmCnn-xA8VmbwdQt-MpyZjXkzmzfJvPln3mymONhGj7bF1cuX_6oTIGcgpFJ3j_619zuxfwFMKJEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068630890</pqid></control><display><type>article</type><title>Mixed uncertainty analysis on pumping by peristaltic hearts using Dempster–Shafer theory</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>He, Yanyan ; Battista, Nicholas A. ; Waldrop, Lindsay D.</creator><creatorcontrib>He, Yanyan ; Battista, Nicholas A. ; Waldrop, Lindsay D.</creatorcontrib><description>In this paper, we introduce the numerical strategy for mixed uncertainty propagation based on probability and Dempster–Shafer theories, and apply it to the computational model of peristalsis in a heart-pumping system. Specifically, the stochastic uncertainty in the system is represented with random variables while epistemic uncertainty is represented using non-probabilistic uncertain variables with belief functions. The mixed uncertainty is propagated through the system, resulting in the uncertainty in the chosen quantities of interest (QoI, such as flow volume, cost of transport and work). With the introduced numerical method, the uncertainty in the statistics of QoIs will be represented using belief functions. With three representative probability distributions consistent with the belief structure, global sensitivity analysis has also been implemented to identify important uncertain factors and the results have been compared between different peristalsis models. To reduce the computational cost, physics constrained generalized polynomial chaos method is adopted to construct cheaper surrogates as approximations for the full simulation.</description><identifier>ISSN: 0303-6812</identifier><identifier>ISSN: 1432-1416</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-024-02116-6</identifier><identifier>PMID: 38879850</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Applications of Mathematics ; Computational efficiency ; Computer applications ; Computer Simulation ; Computing costs ; Dempster-Shafer Method ; Heart - physiology ; Humans ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Models, Cardiovascular ; Nonlinear Dynamics ; Numerical methods ; Peristalsis ; Peristalsis - physiology ; Polynomials ; Pumping ; Random variables ; Sensitivity analysis ; Statistical analysis ; Stochastic Processes ; Uncertainty ; Uncertainty analysis</subject><ispartof>Journal of mathematical biology, 2024-07, Vol.89 (1), p.13, Article 13</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-f79776ab8c2a26e4a5fba615630b13acae11b5b9fb288b62be869cfcae8aacd63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-024-02116-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-024-02116-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38879850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Yanyan</creatorcontrib><creatorcontrib>Battista, Nicholas A.</creatorcontrib><creatorcontrib>Waldrop, Lindsay D.</creatorcontrib><title>Mixed uncertainty analysis on pumping by peristaltic hearts using Dempster–Shafer theory</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>In this paper, we introduce the numerical strategy for mixed uncertainty propagation based on probability and Dempster–Shafer theories, and apply it to the computational model of peristalsis in a heart-pumping system. Specifically, the stochastic uncertainty in the system is represented with random variables while epistemic uncertainty is represented using non-probabilistic uncertain variables with belief functions. The mixed uncertainty is propagated through the system, resulting in the uncertainty in the chosen quantities of interest (QoI, such as flow volume, cost of transport and work). With the introduced numerical method, the uncertainty in the statistics of QoIs will be represented using belief functions. With three representative probability distributions consistent with the belief structure, global sensitivity analysis has also been implemented to identify important uncertain factors and the results have been compared between different peristalsis models. To reduce the computational cost, physics constrained generalized polynomial chaos method is adopted to construct cheaper surrogates as approximations for the full simulation.</description><subject>Animals</subject><subject>Applications of Mathematics</subject><subject>Computational efficiency</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Computing costs</subject><subject>Dempster-Shafer Method</subject><subject>Heart - physiology</subject><subject>Humans</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Models, Cardiovascular</subject><subject>Nonlinear Dynamics</subject><subject>Numerical methods</subject><subject>Peristalsis</subject><subject>Peristalsis - physiology</subject><subject>Polynomials</subject><subject>Pumping</subject><subject>Random variables</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Stochastic Processes</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>0303-6812</issn><issn>1432-1416</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL1OHDEQx60IFC4kL5ACWaJJs-CPW6-3REACEogC0qSxxr5ZbtF-YXulbMc75A15kviyF5AoKCxLnp__M_Mj5CtnR5yx4jgwJnSeMbFMh3OVqQ9kwZdSZHzJ1Q5ZMMlkpjQXe-RTCA-M8SIv-UeyJ7UuSp2zBfl1Xf_GFR07hz5C3cWJQgfNFOpA-44OYzvU3T21Ex3Q1yFCE2tH1wg-BjqGTe0M2yFE9M9Pf27XUKGncY29nz6T3QqagF-29z75-f387vQiu7r5cXl6cpU5KVTMqqIsCgVWOwFC4RLyyoLiuZLMcgkOkHOb27KyQmurhEWtSleldw3gVkruk29z7uD7xxFDNG0dHDYNdNiPwUimdJEXSuuEHr5BH_rRp31nKrXUJUuUmCnn-xA8VmbwdQt-MpyZjXkzmzfJvPln3mymONhGj7bF1cuX_6oTIGcgpFJ3j_619zuxfwFMKJEQ</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>He, Yanyan</creator><creator>Battista, Nicholas A.</creator><creator>Waldrop, Lindsay D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>JQ2</scope><scope>K9.</scope><scope>M7N</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20240701</creationdate><title>Mixed uncertainty analysis on pumping by peristaltic hearts using Dempster–Shafer theory</title><author>He, Yanyan ; Battista, Nicholas A. ; Waldrop, Lindsay D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-f79776ab8c2a26e4a5fba615630b13acae11b5b9fb288b62be869cfcae8aacd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Applications of Mathematics</topic><topic>Computational efficiency</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Computing costs</topic><topic>Dempster-Shafer Method</topic><topic>Heart - physiology</topic><topic>Humans</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Models, Cardiovascular</topic><topic>Nonlinear Dynamics</topic><topic>Numerical methods</topic><topic>Peristalsis</topic><topic>Peristalsis - physiology</topic><topic>Polynomials</topic><topic>Pumping</topic><topic>Random variables</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Stochastic Processes</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yanyan</creatorcontrib><creatorcontrib>Battista, Nicholas A.</creatorcontrib><creatorcontrib>Waldrop, Lindsay D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yanyan</au><au>Battista, Nicholas A.</au><au>Waldrop, Lindsay D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed uncertainty analysis on pumping by peristaltic hearts using Dempster–Shafer theory</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>89</volume><issue>1</issue><spage>13</spage><pages>13-</pages><artnum>13</artnum><issn>0303-6812</issn><issn>1432-1416</issn><eissn>1432-1416</eissn><abstract>In this paper, we introduce the numerical strategy for mixed uncertainty propagation based on probability and Dempster–Shafer theories, and apply it to the computational model of peristalsis in a heart-pumping system. Specifically, the stochastic uncertainty in the system is represented with random variables while epistemic uncertainty is represented using non-probabilistic uncertain variables with belief functions. The mixed uncertainty is propagated through the system, resulting in the uncertainty in the chosen quantities of interest (QoI, such as flow volume, cost of transport and work). With the introduced numerical method, the uncertainty in the statistics of QoIs will be represented using belief functions. With three representative probability distributions consistent with the belief structure, global sensitivity analysis has also been implemented to identify important uncertain factors and the results have been compared between different peristalsis models. To reduce the computational cost, physics constrained generalized polynomial chaos method is adopted to construct cheaper surrogates as approximations for the full simulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38879850</pmid><doi>10.1007/s00285-024-02116-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2024-07, Vol.89 (1), p.13, Article 13 |
issn | 0303-6812 1432-1416 1432-1416 |
language | eng |
recordid | cdi_proquest_miscellaneous_3068757688 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Applications of Mathematics Computational efficiency Computer applications Computer Simulation Computing costs Dempster-Shafer Method Heart - physiology Humans Mathematical analysis Mathematical and Computational Biology Mathematical Concepts Mathematical models Mathematics Mathematics and Statistics Models, Biological Models, Cardiovascular Nonlinear Dynamics Numerical methods Peristalsis Peristalsis - physiology Polynomials Pumping Random variables Sensitivity analysis Statistical analysis Stochastic Processes Uncertainty Uncertainty analysis |
title | Mixed uncertainty analysis on pumping by peristaltic hearts using Dempster–Shafer theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20uncertainty%20analysis%20on%20pumping%20by%20peristaltic%20hearts%20using%20Dempster%E2%80%93Shafer%20theory&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=He,%20Yanyan&rft.date=2024-07-01&rft.volume=89&rft.issue=1&rft.spage=13&rft.pages=13-&rft.artnum=13&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-024-02116-6&rft_dat=%3Cproquest_cross%3E3068630890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068630890&rft_id=info:pmid/38879850&rfr_iscdi=true |