Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration
Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-08, Vol.274 (Pt 1), p.132970, Article 132970 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | Pt 1 |
container_start_page | 132970 |
container_title | International journal of biological macromolecules |
container_volume | 274 |
creator | Zhang, Yifan Fang, Min Zhu, Junbin Li, Ting Li, Na Su, Bo Sun, Guo-Dong Li, Lihua Zhou, Changren |
description | Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role in intercellular communication and modulation of inflammation to aid bone regeneration. However, the distance between exosomes and areas of damage can hinder efficient bone generation and cell survival. To overcome this limitation, we fabricated a continuous oxygen-supplying composite scaffold, with the encapsulation of calcium peroxide in a polylactic acid three-dimensional (3D) printing construct (CPS), as both an oxygen source and hydroxyapatite (HAP) precursor. Furthermore, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were incorporated into hyaluronic acid (HA) hydrogels to stimulate cell growth and modulate inflammation. The release of exosomes into cells leads to an increase in alkaline phosphatase production. In vivo results demonstrated that the composite scaffold regulated the inflammatory microenvironment, relieved tissue hypoxia, and promoted new bone formation. These results indicate that the synergistic effect of exosomes and oxygen promoted the proliferation of BMSCs, alleviated inflammation and exhibited excellent osteogenic properties. In conclusion, this osteogenic functional composite scaffold material offers a highly effective approach for bone repair.
•The reaction of calcium peroxide can generate oxygen, releasing calcium ions can help promote the growth of new bones.•Oxygen and exosomes synergistically promote bone repair.•In vivo, the composite scaffold allows bone repair to be promoted, and angiogenesis to be accelerated. |
doi_str_mv | 10.1016/j.ijbiomac.2024.132970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068755483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024037759</els_id><sourcerecordid>3068755483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a8322842f4a3133b6fb5bc457cd1c3965bd6d9cd39185828d89ce4c593b8bcbb3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYfCK1Resslgx3Hi7ECltEiV2JS1ZV_fTD1K4mA70HkPHhiPpsOW1f3Ruefq6CPkmrMtZ7z9uN_6vfVhMrCtWd1suaj7jr0iG666vmKMiddkw3jDK8UFuyRvU9qXbSu5ekMuhVJdW4t-Q_7cPocUJqzGYBw6-nQw4xrD7IEa8MfZxbDDkUKYlpB8Rvrb5ycang87nKslBreCn3dUfKFL9HMuHksYD6OBfPZIYIYhjC7RIURqw4w0-5RWpBEX4yM1sytt8cNosg_zO3IxmDHh-5d6RX58vX28ua8evt99u_n8UEHdyFwZJepaNfXQGMGFsO1gpYVGduA4iL6V1rWuByd6rqSqlVM9YAOyF1ZZsFZckQ8n3xLj54op68knwHE0M4Y1acFa1UnZKFGk7UkKMaQUcdAl7WTiQXOmj0T0Xp-J6CMRfSJSDq9ffqx2Qvfv7IygCD6dBFiS_vIYdQKPM6DzESFrF_z_fvwFVnCj2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068755483</pqid></control><display><type>article</type><title>Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Yifan ; Fang, Min ; Zhu, Junbin ; Li, Ting ; Li, Na ; Su, Bo ; Sun, Guo-Dong ; Li, Lihua ; Zhou, Changren</creator><creatorcontrib>Zhang, Yifan ; Fang, Min ; Zhu, Junbin ; Li, Ting ; Li, Na ; Su, Bo ; Sun, Guo-Dong ; Li, Lihua ; Zhou, Changren</creatorcontrib><description>Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role in intercellular communication and modulation of inflammation to aid bone regeneration. However, the distance between exosomes and areas of damage can hinder efficient bone generation and cell survival. To overcome this limitation, we fabricated a continuous oxygen-supplying composite scaffold, with the encapsulation of calcium peroxide in a polylactic acid three-dimensional (3D) printing construct (CPS), as both an oxygen source and hydroxyapatite (HAP) precursor. Furthermore, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were incorporated into hyaluronic acid (HA) hydrogels to stimulate cell growth and modulate inflammation. The release of exosomes into cells leads to an increase in alkaline phosphatase production. In vivo results demonstrated that the composite scaffold regulated the inflammatory microenvironment, relieved tissue hypoxia, and promoted new bone formation. These results indicate that the synergistic effect of exosomes and oxygen promoted the proliferation of BMSCs, alleviated inflammation and exhibited excellent osteogenic properties. In conclusion, this osteogenic functional composite scaffold material offers a highly effective approach for bone repair.
•The reaction of calcium peroxide can generate oxygen, releasing calcium ions can help promote the growth of new bones.•Oxygen and exosomes synergistically promote bone repair.•In vivo, the composite scaffold allows bone repair to be promoted, and angiogenesis to be accelerated.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.132970</identifier><identifier>PMID: 38876239</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bone regeneration ; Exosomes ; Oxygen production</subject><ispartof>International journal of biological macromolecules, 2024-08, Vol.274 (Pt 1), p.132970, Article 132970</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a8322842f4a3133b6fb5bc457cd1c3965bd6d9cd39185828d89ce4c593b8bcbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2024.132970$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38876239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Fang, Min</creatorcontrib><creatorcontrib>Zhu, Junbin</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Su, Bo</creatorcontrib><creatorcontrib>Sun, Guo-Dong</creatorcontrib><creatorcontrib>Li, Lihua</creatorcontrib><creatorcontrib>Zhou, Changren</creatorcontrib><title>Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role in intercellular communication and modulation of inflammation to aid bone regeneration. However, the distance between exosomes and areas of damage can hinder efficient bone generation and cell survival. To overcome this limitation, we fabricated a continuous oxygen-supplying composite scaffold, with the encapsulation of calcium peroxide in a polylactic acid three-dimensional (3D) printing construct (CPS), as both an oxygen source and hydroxyapatite (HAP) precursor. Furthermore, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were incorporated into hyaluronic acid (HA) hydrogels to stimulate cell growth and modulate inflammation. The release of exosomes into cells leads to an increase in alkaline phosphatase production. In vivo results demonstrated that the composite scaffold regulated the inflammatory microenvironment, relieved tissue hypoxia, and promoted new bone formation. These results indicate that the synergistic effect of exosomes and oxygen promoted the proliferation of BMSCs, alleviated inflammation and exhibited excellent osteogenic properties. In conclusion, this osteogenic functional composite scaffold material offers a highly effective approach for bone repair.
•The reaction of calcium peroxide can generate oxygen, releasing calcium ions can help promote the growth of new bones.•Oxygen and exosomes synergistically promote bone repair.•In vivo, the composite scaffold allows bone repair to be promoted, and angiogenesis to be accelerated.</description><subject>Bone regeneration</subject><subject>Exosomes</subject><subject>Oxygen production</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERYfCK1Resslgx3Hi7ECltEiV2JS1ZV_fTD1K4mA70HkPHhiPpsOW1f3Ruefq6CPkmrMtZ7z9uN_6vfVhMrCtWd1suaj7jr0iG666vmKMiddkw3jDK8UFuyRvU9qXbSu5ekMuhVJdW4t-Q_7cPocUJqzGYBw6-nQw4xrD7IEa8MfZxbDDkUKYlpB8Rvrb5ycang87nKslBreCn3dUfKFL9HMuHksYD6OBfPZIYIYhjC7RIURqw4w0-5RWpBEX4yM1sytt8cNosg_zO3IxmDHh-5d6RX58vX28ua8evt99u_n8UEHdyFwZJepaNfXQGMGFsO1gpYVGduA4iL6V1rWuByd6rqSqlVM9YAOyF1ZZsFZckQ8n3xLj54op68knwHE0M4Y1acFa1UnZKFGk7UkKMaQUcdAl7WTiQXOmj0T0Xp-J6CMRfSJSDq9ffqx2Qvfv7IygCD6dBFiS_vIYdQKPM6DzESFrF_z_fvwFVnCj2w</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Yifan</creator><creator>Fang, Min</creator><creator>Zhu, Junbin</creator><creator>Li, Ting</creator><creator>Li, Na</creator><creator>Su, Bo</creator><creator>Sun, Guo-Dong</creator><creator>Li, Lihua</creator><creator>Zhou, Changren</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240801</creationdate><title>Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration</title><author>Zhang, Yifan ; Fang, Min ; Zhu, Junbin ; Li, Ting ; Li, Na ; Su, Bo ; Sun, Guo-Dong ; Li, Lihua ; Zhou, Changren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a8322842f4a3133b6fb5bc457cd1c3965bd6d9cd39185828d89ce4c593b8bcbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bone regeneration</topic><topic>Exosomes</topic><topic>Oxygen production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Fang, Min</creatorcontrib><creatorcontrib>Zhu, Junbin</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Su, Bo</creatorcontrib><creatorcontrib>Sun, Guo-Dong</creatorcontrib><creatorcontrib>Li, Lihua</creatorcontrib><creatorcontrib>Zhou, Changren</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yifan</au><au>Fang, Min</au><au>Zhu, Junbin</au><au>Li, Ting</au><au>Li, Na</au><au>Su, Bo</au><au>Sun, Guo-Dong</au><au>Li, Lihua</au><au>Zhou, Changren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>274</volume><issue>Pt 1</issue><spage>132970</spage><pages>132970-</pages><artnum>132970</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role in intercellular communication and modulation of inflammation to aid bone regeneration. However, the distance between exosomes and areas of damage can hinder efficient bone generation and cell survival. To overcome this limitation, we fabricated a continuous oxygen-supplying composite scaffold, with the encapsulation of calcium peroxide in a polylactic acid three-dimensional (3D) printing construct (CPS), as both an oxygen source and hydroxyapatite (HAP) precursor. Furthermore, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were incorporated into hyaluronic acid (HA) hydrogels to stimulate cell growth and modulate inflammation. The release of exosomes into cells leads to an increase in alkaline phosphatase production. In vivo results demonstrated that the composite scaffold regulated the inflammatory microenvironment, relieved tissue hypoxia, and promoted new bone formation. These results indicate that the synergistic effect of exosomes and oxygen promoted the proliferation of BMSCs, alleviated inflammation and exhibited excellent osteogenic properties. In conclusion, this osteogenic functional composite scaffold material offers a highly effective approach for bone repair.
•The reaction of calcium peroxide can generate oxygen, releasing calcium ions can help promote the growth of new bones.•Oxygen and exosomes synergistically promote bone repair.•In vivo, the composite scaffold allows bone repair to be promoted, and angiogenesis to be accelerated.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38876239</pmid><doi>10.1016/j.ijbiomac.2024.132970</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8130 |
ispartof | International journal of biological macromolecules, 2024-08, Vol.274 (Pt 1), p.132970, Article 132970 |
issn | 0141-8130 1879-0003 1879-0003 |
language | eng |
recordid | cdi_proquest_miscellaneous_3068755483 |
source | Elsevier ScienceDirect Journals |
subjects | Bone regeneration Exosomes Oxygen production |
title | Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exosome-loaded%20hyaluronic%20acid%20hydrogel%20composite%20with%20oxygen-producing%203D%20printed%20polylactic%20acid%20scaffolds%20for%20bone%20tissue%20repair%20and%20regeneration&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Zhang,%20Yifan&rft.date=2024-08-01&rft.volume=274&rft.issue=Pt%201&rft.spage=132970&rft.pages=132970-&rft.artnum=132970&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.132970&rft_dat=%3Cproquest_cross%3E3068755483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068755483&rft_id=info:pmid/38876239&rft_els_id=S0141813024037759&rfr_iscdi=true |