Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration

Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2024-08, Vol.274 (Pt 1), p.132970, Article 132970
Hauptverfasser: Zhang, Yifan, Fang, Min, Zhu, Junbin, Li, Ting, Li, Na, Su, Bo, Sun, Guo-Dong, Li, Lihua, Zhou, Changren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt 1
container_start_page 132970
container_title International journal of biological macromolecules
container_volume 274
creator Zhang, Yifan
Fang, Min
Zhu, Junbin
Li, Ting
Li, Na
Su, Bo
Sun, Guo-Dong
Li, Lihua
Zhou, Changren
description Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role in intercellular communication and modulation of inflammation to aid bone regeneration. However, the distance between exosomes and areas of damage can hinder efficient bone generation and cell survival. To overcome this limitation, we fabricated a continuous oxygen-supplying composite scaffold, with the encapsulation of calcium peroxide in a polylactic acid three-dimensional (3D) printing construct (CPS), as both an oxygen source and hydroxyapatite (HAP) precursor. Furthermore, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were incorporated into hyaluronic acid (HA) hydrogels to stimulate cell growth and modulate inflammation. The release of exosomes into cells leads to an increase in alkaline phosphatase production. In vivo results demonstrated that the composite scaffold regulated the inflammatory microenvironment, relieved tissue hypoxia, and promoted new bone formation. These results indicate that the synergistic effect of exosomes and oxygen promoted the proliferation of BMSCs, alleviated inflammation and exhibited excellent osteogenic properties. In conclusion, this osteogenic functional composite scaffold material offers a highly effective approach for bone repair. •The reaction of calcium peroxide can generate oxygen, releasing calcium ions can help promote the growth of new bones.•Oxygen and exosomes synergistically promote bone repair.•In vivo, the composite scaffold allows bone repair to be promoted, and angiogenesis to be accelerated.
doi_str_mv 10.1016/j.ijbiomac.2024.132970
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068755483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141813024037759</els_id><sourcerecordid>3068755483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a8322842f4a3133b6fb5bc457cd1c3965bd6d9cd39185828d89ce4c593b8bcbb3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS1ERYfCK1Resslgx3Hi7ECltEiV2JS1ZV_fTD1K4mA70HkPHhiPpsOW1f3Ruefq6CPkmrMtZ7z9uN_6vfVhMrCtWd1suaj7jr0iG666vmKMiddkw3jDK8UFuyRvU9qXbSu5ekMuhVJdW4t-Q_7cPocUJqzGYBw6-nQw4xrD7IEa8MfZxbDDkUKYlpB8Rvrb5ycang87nKslBreCn3dUfKFL9HMuHksYD6OBfPZIYIYhjC7RIURqw4w0-5RWpBEX4yM1sytt8cNosg_zO3IxmDHh-5d6RX58vX28ua8evt99u_n8UEHdyFwZJepaNfXQGMGFsO1gpYVGduA4iL6V1rWuByd6rqSqlVM9YAOyF1ZZsFZckQ8n3xLj54op68knwHE0M4Y1acFa1UnZKFGk7UkKMaQUcdAl7WTiQXOmj0T0Xp-J6CMRfSJSDq9ffqx2Qvfv7IygCD6dBFiS_vIYdQKPM6DzESFrF_z_fvwFVnCj2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068755483</pqid></control><display><type>article</type><title>Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Yifan ; Fang, Min ; Zhu, Junbin ; Li, Ting ; Li, Na ; Su, Bo ; Sun, Guo-Dong ; Li, Lihua ; Zhou, Changren</creator><creatorcontrib>Zhang, Yifan ; Fang, Min ; Zhu, Junbin ; Li, Ting ; Li, Na ; Su, Bo ; Sun, Guo-Dong ; Li, Lihua ; Zhou, Changren</creatorcontrib><description>Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role in intercellular communication and modulation of inflammation to aid bone regeneration. However, the distance between exosomes and areas of damage can hinder efficient bone generation and cell survival. To overcome this limitation, we fabricated a continuous oxygen-supplying composite scaffold, with the encapsulation of calcium peroxide in a polylactic acid three-dimensional (3D) printing construct (CPS), as both an oxygen source and hydroxyapatite (HAP) precursor. Furthermore, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were incorporated into hyaluronic acid (HA) hydrogels to stimulate cell growth and modulate inflammation. The release of exosomes into cells leads to an increase in alkaline phosphatase production. In vivo results demonstrated that the composite scaffold regulated the inflammatory microenvironment, relieved tissue hypoxia, and promoted new bone formation. These results indicate that the synergistic effect of exosomes and oxygen promoted the proliferation of BMSCs, alleviated inflammation and exhibited excellent osteogenic properties. In conclusion, this osteogenic functional composite scaffold material offers a highly effective approach for bone repair. •The reaction of calcium peroxide can generate oxygen, releasing calcium ions can help promote the growth of new bones.•Oxygen and exosomes synergistically promote bone repair.•In vivo, the composite scaffold allows bone repair to be promoted, and angiogenesis to be accelerated.</description><identifier>ISSN: 0141-8130</identifier><identifier>ISSN: 1879-0003</identifier><identifier>EISSN: 1879-0003</identifier><identifier>DOI: 10.1016/j.ijbiomac.2024.132970</identifier><identifier>PMID: 38876239</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Bone regeneration ; Exosomes ; Oxygen production</subject><ispartof>International journal of biological macromolecules, 2024-08, Vol.274 (Pt 1), p.132970, Article 132970</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a8322842f4a3133b6fb5bc457cd1c3965bd6d9cd39185828d89ce4c593b8bcbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijbiomac.2024.132970$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38876239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Fang, Min</creatorcontrib><creatorcontrib>Zhu, Junbin</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Su, Bo</creatorcontrib><creatorcontrib>Sun, Guo-Dong</creatorcontrib><creatorcontrib>Li, Lihua</creatorcontrib><creatorcontrib>Zhou, Changren</creatorcontrib><title>Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration</title><title>International journal of biological macromolecules</title><addtitle>Int J Biol Macromol</addtitle><description>Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role in intercellular communication and modulation of inflammation to aid bone regeneration. However, the distance between exosomes and areas of damage can hinder efficient bone generation and cell survival. To overcome this limitation, we fabricated a continuous oxygen-supplying composite scaffold, with the encapsulation of calcium peroxide in a polylactic acid three-dimensional (3D) printing construct (CPS), as both an oxygen source and hydroxyapatite (HAP) precursor. Furthermore, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were incorporated into hyaluronic acid (HA) hydrogels to stimulate cell growth and modulate inflammation. The release of exosomes into cells leads to an increase in alkaline phosphatase production. In vivo results demonstrated that the composite scaffold regulated the inflammatory microenvironment, relieved tissue hypoxia, and promoted new bone formation. These results indicate that the synergistic effect of exosomes and oxygen promoted the proliferation of BMSCs, alleviated inflammation and exhibited excellent osteogenic properties. In conclusion, this osteogenic functional composite scaffold material offers a highly effective approach for bone repair. •The reaction of calcium peroxide can generate oxygen, releasing calcium ions can help promote the growth of new bones.•Oxygen and exosomes synergistically promote bone repair.•In vivo, the composite scaffold allows bone repair to be promoted, and angiogenesis to be accelerated.</description><subject>Bone regeneration</subject><subject>Exosomes</subject><subject>Oxygen production</subject><issn>0141-8130</issn><issn>1879-0003</issn><issn>1879-0003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS1ERYfCK1Resslgx3Hi7ECltEiV2JS1ZV_fTD1K4mA70HkPHhiPpsOW1f3Ruefq6CPkmrMtZ7z9uN_6vfVhMrCtWd1suaj7jr0iG666vmKMiddkw3jDK8UFuyRvU9qXbSu5ekMuhVJdW4t-Q_7cPocUJqzGYBw6-nQw4xrD7IEa8MfZxbDDkUKYlpB8Rvrb5ycang87nKslBreCn3dUfKFL9HMuHksYD6OBfPZIYIYhjC7RIURqw4w0-5RWpBEX4yM1sytt8cNosg_zO3IxmDHh-5d6RX58vX28ua8evt99u_n8UEHdyFwZJepaNfXQGMGFsO1gpYVGduA4iL6V1rWuByd6rqSqlVM9YAOyF1ZZsFZckQ8n3xLj54op68knwHE0M4Y1acFa1UnZKFGk7UkKMaQUcdAl7WTiQXOmj0T0Xp-J6CMRfSJSDq9ffqx2Qvfv7IygCD6dBFiS_vIYdQKPM6DzESFrF_z_fvwFVnCj2w</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Yifan</creator><creator>Fang, Min</creator><creator>Zhu, Junbin</creator><creator>Li, Ting</creator><creator>Li, Na</creator><creator>Su, Bo</creator><creator>Sun, Guo-Dong</creator><creator>Li, Lihua</creator><creator>Zhou, Changren</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240801</creationdate><title>Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration</title><author>Zhang, Yifan ; Fang, Min ; Zhu, Junbin ; Li, Ting ; Li, Na ; Su, Bo ; Sun, Guo-Dong ; Li, Lihua ; Zhou, Changren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a8322842f4a3133b6fb5bc457cd1c3965bd6d9cd39185828d89ce4c593b8bcbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bone regeneration</topic><topic>Exosomes</topic><topic>Oxygen production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yifan</creatorcontrib><creatorcontrib>Fang, Min</creatorcontrib><creatorcontrib>Zhu, Junbin</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Su, Bo</creatorcontrib><creatorcontrib>Sun, Guo-Dong</creatorcontrib><creatorcontrib>Li, Lihua</creatorcontrib><creatorcontrib>Zhou, Changren</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of biological macromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yifan</au><au>Fang, Min</au><au>Zhu, Junbin</au><au>Li, Ting</au><au>Li, Na</au><au>Su, Bo</au><au>Sun, Guo-Dong</au><au>Li, Lihua</au><au>Zhou, Changren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration</atitle><jtitle>International journal of biological macromolecules</jtitle><addtitle>Int J Biol Macromol</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>274</volume><issue>Pt 1</issue><spage>132970</spage><pages>132970-</pages><artnum>132970</artnum><issn>0141-8130</issn><issn>1879-0003</issn><eissn>1879-0003</eissn><abstract>Bone defects can interfere with bone healing by disrupting the local environment, resulting in vascular damage and hypoxia. Under these conditions, insufficient oxygen availability is a significant factor that exacerbates disease by blocking angiogenesis or osteogenesis. Exosomes play a crucial role in intercellular communication and modulation of inflammation to aid bone regeneration. However, the distance between exosomes and areas of damage can hinder efficient bone generation and cell survival. To overcome this limitation, we fabricated a continuous oxygen-supplying composite scaffold, with the encapsulation of calcium peroxide in a polylactic acid three-dimensional (3D) printing construct (CPS), as both an oxygen source and hydroxyapatite (HAP) precursor. Furthermore, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were incorporated into hyaluronic acid (HA) hydrogels to stimulate cell growth and modulate inflammation. The release of exosomes into cells leads to an increase in alkaline phosphatase production. In vivo results demonstrated that the composite scaffold regulated the inflammatory microenvironment, relieved tissue hypoxia, and promoted new bone formation. These results indicate that the synergistic effect of exosomes and oxygen promoted the proliferation of BMSCs, alleviated inflammation and exhibited excellent osteogenic properties. In conclusion, this osteogenic functional composite scaffold material offers a highly effective approach for bone repair. •The reaction of calcium peroxide can generate oxygen, releasing calcium ions can help promote the growth of new bones.•Oxygen and exosomes synergistically promote bone repair.•In vivo, the composite scaffold allows bone repair to be promoted, and angiogenesis to be accelerated.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>38876239</pmid><doi>10.1016/j.ijbiomac.2024.132970</doi></addata></record>
fulltext fulltext
identifier ISSN: 0141-8130
ispartof International journal of biological macromolecules, 2024-08, Vol.274 (Pt 1), p.132970, Article 132970
issn 0141-8130
1879-0003
1879-0003
language eng
recordid cdi_proquest_miscellaneous_3068755483
source Elsevier ScienceDirect Journals
subjects Bone regeneration
Exosomes
Oxygen production
title Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exosome-loaded%20hyaluronic%20acid%20hydrogel%20composite%20with%20oxygen-producing%203D%20printed%20polylactic%20acid%20scaffolds%20for%20bone%20tissue%20repair%20and%20regeneration&rft.jtitle=International%20journal%20of%20biological%20macromolecules&rft.au=Zhang,%20Yifan&rft.date=2024-08-01&rft.volume=274&rft.issue=Pt%201&rft.spage=132970&rft.pages=132970-&rft.artnum=132970&rft.issn=0141-8130&rft.eissn=1879-0003&rft_id=info:doi/10.1016/j.ijbiomac.2024.132970&rft_dat=%3Cproquest_cross%3E3068755483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068755483&rft_id=info:pmid/38876239&rft_els_id=S0141813024037759&rfr_iscdi=true