Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation
[Display omitted] The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herei...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-11, Vol.673, p.49-59 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | |
container_start_page | 49 |
container_title | Journal of colloid and interface science |
container_volume | 673 |
creator | Zhao, Peng Liu, Qiancheng Yang, Xulin Yang, Sudong Chen, Lin Zhu, Jie Zhang, Qian |
description | [Display omitted]
The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm−2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm−2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm−2 and a prominent durability (120 h at 50 mA cm−2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis. |
doi_str_mv | 10.1016/j.jcis.2024.06.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068755239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724013031</els_id><sourcerecordid>3068755239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-9cea3a76c6cdcf386c03acd091505d018a71f40741221ac4fe628583ecb7237b3</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhUcIREPhBVggL9nMYI8zfxIb1BKKVBEJwdpyru80jmbswfYUsuMR-oBd8STcJAWJDStbV9859-dk2UvBC8FF_WZX7MDGouTlsuB1wav6UbYQvKvyRnD5OFtwXoq8a7rmLHsW445zIaqqe5qdybZtKqovsvvPM3PaeQj7mPQQ2eiN7S0aNvng58hWuF5fHZGYwgxpDhjZd5u2zE_omLxk1iUM4J1DSKTTAbY24ZFkcZ7I51D2jn2yK2S91yPTkW3tzfbXz7sJQ-_DqB0gw4FUwYOmQWgaQgPzP_Y31AZv_TAnSyYBNRw_2pl_FckCo56aNNboA_M8e9LTTvji4T3Pvq7ef7m4yq_XHz5evLvOoZRNyjtALXVTQw0GetnWwKUGwztR8cpw0epG9EveLEVZCg3LHuuyrVqJsGnIYCPPs9cn3yn4bzPGpEYbAYdBO6QbKslrundVyo7Q8oRC8DEG7NUU7KjDXgmuDqmqnTqkqg6pKl4rSpVErx78582I5q_kT4wEvD0BSFveWgwqgkW6qbGBLqSMt__z_w3xorxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068755239</pqid></control><display><type>article</type><title>Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Peng ; Liu, Qiancheng ; Yang, Xulin ; Yang, Sudong ; Chen, Lin ; Zhu, Jie ; Zhang, Qian</creator><creatorcontrib>Zhao, Peng ; Liu, Qiancheng ; Yang, Xulin ; Yang, Sudong ; Chen, Lin ; Zhu, Jie ; Zhang, Qian</creatorcontrib><description>[Display omitted]
The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm−2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm−2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm−2 and a prominent durability (120 h at 50 mA cm−2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.06.056</identifier><identifier>PMID: 38875797</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3D interconnected architecture ; Oxygen evolution reaction ; Porous FeOOH ; Ru nanocrystals ; Urea oxidation reaction</subject><ispartof>Journal of colloid and interface science, 2024-11, Vol.673, p.49-59</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-9cea3a76c6cdcf386c03acd091505d018a71f40741221ac4fe628583ecb7237b3</cites><orcidid>0000-0003-3505-2612 ; 0000-0001-9224-7577 ; 0000-0002-9046-6562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.06.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38875797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Liu, Qiancheng</creatorcontrib><creatorcontrib>Yang, Xulin</creatorcontrib><creatorcontrib>Yang, Sudong</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><title>Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm−2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm−2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm−2 and a prominent durability (120 h at 50 mA cm−2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.</description><subject>3D interconnected architecture</subject><subject>Oxygen evolution reaction</subject><subject>Porous FeOOH</subject><subject>Ru nanocrystals</subject><subject>Urea oxidation reaction</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEUhUcIREPhBVggL9nMYI8zfxIb1BKKVBEJwdpyru80jmbswfYUsuMR-oBd8STcJAWJDStbV9859-dk2UvBC8FF_WZX7MDGouTlsuB1wav6UbYQvKvyRnD5OFtwXoq8a7rmLHsW445zIaqqe5qdybZtKqovsvvPM3PaeQj7mPQQ2eiN7S0aNvng58hWuF5fHZGYwgxpDhjZd5u2zE_omLxk1iUM4J1DSKTTAbY24ZFkcZ7I51D2jn2yK2S91yPTkW3tzfbXz7sJQ-_DqB0gw4FUwYOmQWgaQgPzP_Y31AZv_TAnSyYBNRw_2pl_FckCo56aNNboA_M8e9LTTvji4T3Pvq7ef7m4yq_XHz5evLvOoZRNyjtALXVTQw0GetnWwKUGwztR8cpw0epG9EveLEVZCg3LHuuyrVqJsGnIYCPPs9cn3yn4bzPGpEYbAYdBO6QbKslrundVyo7Q8oRC8DEG7NUU7KjDXgmuDqmqnTqkqg6pKl4rSpVErx78582I5q_kT4wEvD0BSFveWgwqgkW6qbGBLqSMt__z_w3xorxA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhao, Peng</creator><creator>Liu, Qiancheng</creator><creator>Yang, Xulin</creator><creator>Yang, Sudong</creator><creator>Chen, Lin</creator><creator>Zhu, Jie</creator><creator>Zhang, Qian</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3505-2612</orcidid><orcidid>https://orcid.org/0000-0001-9224-7577</orcidid><orcidid>https://orcid.org/0000-0002-9046-6562</orcidid></search><sort><creationdate>20241101</creationdate><title>Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation</title><author>Zhao, Peng ; Liu, Qiancheng ; Yang, Xulin ; Yang, Sudong ; Chen, Lin ; Zhu, Jie ; Zhang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-9cea3a76c6cdcf386c03acd091505d018a71f40741221ac4fe628583ecb7237b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D interconnected architecture</topic><topic>Oxygen evolution reaction</topic><topic>Porous FeOOH</topic><topic>Ru nanocrystals</topic><topic>Urea oxidation reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Liu, Qiancheng</creatorcontrib><creatorcontrib>Yang, Xulin</creatorcontrib><creatorcontrib>Yang, Sudong</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Peng</au><au>Liu, Qiancheng</au><au>Yang, Xulin</au><au>Yang, Sudong</au><au>Chen, Lin</au><au>Zhu, Jie</au><au>Zhang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>673</volume><spage>49</spage><epage>59</epage><pages>49-59</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm−2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm−2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm−2 and a prominent durability (120 h at 50 mA cm−2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38875797</pmid><doi>10.1016/j.jcis.2024.06.056</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3505-2612</orcidid><orcidid>https://orcid.org/0000-0001-9224-7577</orcidid><orcidid>https://orcid.org/0000-0002-9046-6562</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2024-11, Vol.673, p.49-59 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3068755239 |
source | Elsevier ScienceDirect Journals |
subjects | 3D interconnected architecture Oxygen evolution reaction Porous FeOOH Ru nanocrystals Urea oxidation reaction |
title | Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ru%20nanocrystals%20modified%20porous%20FeOOH%20nanostructures%20with%20open%203D%20interconnected%20architecture%20supported%20on%20NiFe%20foam%20as%20high%E2%80%90performance%20electrocatalyst%20for%20oxygen%20evolution%20reaction%20and%20electrocatalytic%20urea%20oxidation&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhao,%20Peng&rft.date=2024-11-01&rft.volume=673&rft.spage=49&rft.epage=59&rft.pages=49-59&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.06.056&rft_dat=%3Cproquest_cross%3E3068755239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068755239&rft_id=info:pmid/38875797&rft_els_id=S0021979724013031&rfr_iscdi=true |