Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation

[Display omitted] The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2024-11, Vol.673, p.49-59
Hauptverfasser: Zhao, Peng, Liu, Qiancheng, Yang, Xulin, Yang, Sudong, Chen, Lin, Zhu, Jie, Zhang, Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 49
container_title Journal of colloid and interface science
container_volume 673
creator Zhao, Peng
Liu, Qiancheng
Yang, Xulin
Yang, Sudong
Chen, Lin
Zhu, Jie
Zhang, Qian
description [Display omitted] The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm−2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm−2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm−2 and a prominent durability (120 h at 50 mA cm−2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.
doi_str_mv 10.1016/j.jcis.2024.06.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068755239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724013031</els_id><sourcerecordid>3068755239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-9cea3a76c6cdcf386c03acd091505d018a71f40741221ac4fe628583ecb7237b3</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhUcIREPhBVggL9nMYI8zfxIb1BKKVBEJwdpyru80jmbswfYUsuMR-oBd8STcJAWJDStbV9859-dk2UvBC8FF_WZX7MDGouTlsuB1wav6UbYQvKvyRnD5OFtwXoq8a7rmLHsW445zIaqqe5qdybZtKqovsvvPM3PaeQj7mPQQ2eiN7S0aNvng58hWuF5fHZGYwgxpDhjZd5u2zE_omLxk1iUM4J1DSKTTAbY24ZFkcZ7I51D2jn2yK2S91yPTkW3tzfbXz7sJQ-_DqB0gw4FUwYOmQWgaQgPzP_Y31AZv_TAnSyYBNRw_2pl_FckCo56aNNboA_M8e9LTTvji4T3Pvq7ef7m4yq_XHz5evLvOoZRNyjtALXVTQw0GetnWwKUGwztR8cpw0epG9EveLEVZCg3LHuuyrVqJsGnIYCPPs9cn3yn4bzPGpEYbAYdBO6QbKslrundVyo7Q8oRC8DEG7NUU7KjDXgmuDqmqnTqkqg6pKl4rSpVErx78582I5q_kT4wEvD0BSFveWgwqgkW6qbGBLqSMt__z_w3xorxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068755239</pqid></control><display><type>article</type><title>Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Peng ; Liu, Qiancheng ; Yang, Xulin ; Yang, Sudong ; Chen, Lin ; Zhu, Jie ; Zhang, Qian</creator><creatorcontrib>Zhao, Peng ; Liu, Qiancheng ; Yang, Xulin ; Yang, Sudong ; Chen, Lin ; Zhu, Jie ; Zhang, Qian</creatorcontrib><description>[Display omitted] The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm−2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm−2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm−2 and a prominent durability (120 h at 50 mA cm−2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.06.056</identifier><identifier>PMID: 38875797</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3D interconnected architecture ; Oxygen evolution reaction ; Porous FeOOH ; Ru nanocrystals ; Urea oxidation reaction</subject><ispartof>Journal of colloid and interface science, 2024-11, Vol.673, p.49-59</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-9cea3a76c6cdcf386c03acd091505d018a71f40741221ac4fe628583ecb7237b3</cites><orcidid>0000-0003-3505-2612 ; 0000-0001-9224-7577 ; 0000-0002-9046-6562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.06.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38875797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Liu, Qiancheng</creatorcontrib><creatorcontrib>Yang, Xulin</creatorcontrib><creatorcontrib>Yang, Sudong</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><title>Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm−2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm−2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm−2 and a prominent durability (120 h at 50 mA cm−2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.</description><subject>3D interconnected architecture</subject><subject>Oxygen evolution reaction</subject><subject>Porous FeOOH</subject><subject>Ru nanocrystals</subject><subject>Urea oxidation reaction</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEUhUcIREPhBVggL9nMYI8zfxIb1BKKVBEJwdpyru80jmbswfYUsuMR-oBd8STcJAWJDStbV9859-dk2UvBC8FF_WZX7MDGouTlsuB1wav6UbYQvKvyRnD5OFtwXoq8a7rmLHsW445zIaqqe5qdybZtKqovsvvPM3PaeQj7mPQQ2eiN7S0aNvng58hWuF5fHZGYwgxpDhjZd5u2zE_omLxk1iUM4J1DSKTTAbY24ZFkcZ7I51D2jn2yK2S91yPTkW3tzfbXz7sJQ-_DqB0gw4FUwYOmQWgaQgPzP_Y31AZv_TAnSyYBNRw_2pl_FckCo56aNNboA_M8e9LTTvji4T3Pvq7ef7m4yq_XHz5evLvOoZRNyjtALXVTQw0GetnWwKUGwztR8cpw0epG9EveLEVZCg3LHuuyrVqJsGnIYCPPs9cn3yn4bzPGpEYbAYdBO6QbKslrundVyo7Q8oRC8DEG7NUU7KjDXgmuDqmqnTqkqg6pKl4rSpVErx78582I5q_kT4wEvD0BSFveWgwqgkW6qbGBLqSMt__z_w3xorxA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Zhao, Peng</creator><creator>Liu, Qiancheng</creator><creator>Yang, Xulin</creator><creator>Yang, Sudong</creator><creator>Chen, Lin</creator><creator>Zhu, Jie</creator><creator>Zhang, Qian</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3505-2612</orcidid><orcidid>https://orcid.org/0000-0001-9224-7577</orcidid><orcidid>https://orcid.org/0000-0002-9046-6562</orcidid></search><sort><creationdate>20241101</creationdate><title>Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation</title><author>Zhao, Peng ; Liu, Qiancheng ; Yang, Xulin ; Yang, Sudong ; Chen, Lin ; Zhu, Jie ; Zhang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-9cea3a76c6cdcf386c03acd091505d018a71f40741221ac4fe628583ecb7237b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D interconnected architecture</topic><topic>Oxygen evolution reaction</topic><topic>Porous FeOOH</topic><topic>Ru nanocrystals</topic><topic>Urea oxidation reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Liu, Qiancheng</creatorcontrib><creatorcontrib>Yang, Xulin</creatorcontrib><creatorcontrib>Yang, Sudong</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Peng</au><au>Liu, Qiancheng</au><au>Yang, Xulin</au><au>Yang, Sudong</au><au>Chen, Lin</au><au>Zhu, Jie</au><au>Zhang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>673</volume><spage>49</spage><epage>59</epage><pages>49-59</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] The construction of binder-free electrodes with well-defined three-dimensional (3D) morphology and optimized electronic structure represents an efficient strategy for the design of high-performance electrocatalysts for the development of efficient green hydrogen technologies. Herein, Ru nanocrystals were modified on 3D interconnected porous FeOOH nanostructures with open network-like frameworks on NiFe foam (Ru/FeOOH@NFF), which were used as an efficient electrocatalyst. In this study, a 3D interconnected porous FeOOH with an open network structure was first electrodeposited on NiFe foam and served as the support for the in-situ modification of Ru nanocrystals. Subsequently, the Ru nanocrystals and abundant oxygen vacancies were simultaneously incorporated into the FeOOH matrix via the adsorption-reduction method, which involved NaBH4 reduction. The Ru/FeOOH@NFF electrocatalyst shows a large specific surface area, abundant oxygen vacancies, and modulated electronic structure, which collectively result in a significant enhancement of catalytic properties with respect to the oxygen evolution reaction (OER) and urea oxidation reaction (UOR). The Ru/FeOOH@NFF catalyst exhibits an outstanding OER performance, requiring a low overpotential (360 mV) at 200 mA cm−2 with a small Tafel slope (58 mV dec-1). Meanwhile, the Ru/FeOOH@NFF catalyst demonstrates more efficient UOR activity for achieving 200 mA cm−2 at a lower overpotential of 272 mV. Furthermore, an overall urea electrolysis cell using the Ru/FeOOH@NFF as the anode and Pt as the cathode (Ru/FeOOH@NFF||Pt) reveals a cell voltage of 1.478 V at 10 mA cm−2 and a prominent durability (120 h at 50 mA cm−2). This work will provide a valuable understanding of the construction of high-performance electrocatalysts with 3D microstructure for promoting urea-assisted water electrolysis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38875797</pmid><doi>10.1016/j.jcis.2024.06.056</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3505-2612</orcidid><orcidid>https://orcid.org/0000-0001-9224-7577</orcidid><orcidid>https://orcid.org/0000-0002-9046-6562</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-11, Vol.673, p.49-59
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_3068755239
source Elsevier ScienceDirect Journals
subjects 3D interconnected architecture
Oxygen evolution reaction
Porous FeOOH
Ru nanocrystals
Urea oxidation reaction
title Ru nanocrystals modified porous FeOOH nanostructures with open 3D interconnected architecture supported on NiFe foam as high‐performance electrocatalyst for oxygen evolution reaction and electrocatalytic urea oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ru%20nanocrystals%20modified%20porous%20FeOOH%20nanostructures%20with%20open%203D%20interconnected%20architecture%20supported%20on%20NiFe%20foam%20as%20high%E2%80%90performance%20electrocatalyst%20for%20oxygen%20evolution%20reaction%20and%20electrocatalytic%20urea%20oxidation&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhao,%20Peng&rft.date=2024-11-01&rft.volume=673&rft.spage=49&rft.epage=59&rft.pages=49-59&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.06.056&rft_dat=%3Cproquest_cross%3E3068755239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068755239&rft_id=info:pmid/38875797&rft_els_id=S0021979724013031&rfr_iscdi=true