Synechococcus sp. PCC7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: Potential for astrobiotechnological applications
Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2....
Gespeichert in:
Veröffentlicht in: | Plant physiology and biochemistry 2024-08, Vol.213, p.108793, Article 108793 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108793 |
container_title | Plant physiology and biochemistry |
container_volume | 213 |
creator | Liistro, Elisabetta Battistuzzi, Mariano Cocola, Lorenzo Claudi, Riccardo Poletto, Luca La Rocca, Nicoletta |
description | Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.
•PCC7335 productivity under a low-visible high-far-red light spectrum is higher than expected.•PCC7335 doesn't activate FaRLiP under a low-visible high-far-red light spectrum, but acclimates trough type-III CA.•Production of phycocyanin can be boosted in PCC7335 with a far-red enriched spectrum.•The anoxic atmosphere enriched in CO2 does not affect cells' productivity nor physiological response.•PCC7335 can produce biomass, phycocyanin and modify an anoxic atmosphere with a low energetic demand. |
doi_str_mv | 10.1016/j.plaphy.2024.108793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068752996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0981942824004613</els_id><sourcerecordid>3068752996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-5d953a7777f59d4116b9c906d228ff0711d3fdce2e5eac2e8cd07ce9d8c1ec2b3</originalsourceid><addsrcrecordid>eNp9UduKFDEQDaK44-ofiOTRl57NpS-JD4IM3mBhF1yfQ6ZSbWfo7sSkZ3F-Y7_YDL36uIGQQ-VUHeocQt5ytuWMt1eHbRxtHE5bwURdSqrT8hnZcNXJSrSaPScbphWvdC3UBXmV84GxwuzkS3IhlepYq_iGPPw4zQhDgABwzDTHLb3d7TopG5owxzBnzHQJtLepSugozsnDUECOCEuy1M6u3PDHw9XkIYUzonaZQo4DlhEf6G1YcF68HWkfErV5SWHvSw2GOYzhl4fyY2McC1h8EXxNXvR2zPjm8b0kP798vtt9q65vvn7ffbquQNR8qRqnG2m7cvpGu5rzdq9Bs9YJofqedZw72TtAgQ1aEKjAsQ5QOwUcQezlJXm_zo0p_D5iXszkM-A42hnDMRtZHOoaoXVbqPVKLQvmnLA3MfnJppPhzJzTMAezpmHOaZg1jdL27lHhuJ_Q_W_6Z38hfFwJWPa895hMBo8zoPOp2Gtc8E8r_AU9TqEt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068752996</pqid></control><display><type>article</type><title>Synechococcus sp. PCC7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: Potential for astrobiotechnological applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liistro, Elisabetta ; Battistuzzi, Mariano ; Cocola, Lorenzo ; Claudi, Riccardo ; Poletto, Luca ; La Rocca, Nicoletta</creator><creatorcontrib>Liistro, Elisabetta ; Battistuzzi, Mariano ; Cocola, Lorenzo ; Claudi, Riccardo ; Poletto, Luca ; La Rocca, Nicoletta</creatorcontrib><description>Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.
•PCC7335 productivity under a low-visible high-far-red light spectrum is higher than expected.•PCC7335 doesn't activate FaRLiP under a low-visible high-far-red light spectrum, but acclimates trough type-III CA.•Production of phycocyanin can be boosted in PCC7335 with a far-red enriched spectrum.•The anoxic atmosphere enriched in CO2 does not affect cells' productivity nor physiological response.•PCC7335 can produce biomass, phycocyanin and modify an anoxic atmosphere with a low energetic demand.</description><identifier>ISSN: 0981-9428</identifier><identifier>ISSN: 1873-2690</identifier><identifier>EISSN: 1873-2690</identifier><identifier>DOI: 10.1016/j.plaphy.2024.108793</identifier><identifier>PMID: 38870681</identifier><language>eng</language><publisher>France: Elsevier Masson SAS</publisher><subject>Anoxic atmosphere ; BLSS ; Chromatic acclimation ; Far-red light ; FaRLiP ; M-dwarfs ; Synechococcus sp. PCC7335</subject><ispartof>Plant physiology and biochemistry, 2024-08, Vol.213, p.108793, Article 108793</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Masson SAS.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-5d953a7777f59d4116b9c906d228ff0711d3fdce2e5eac2e8cd07ce9d8c1ec2b3</cites><orcidid>0009-0002-6302-3747 ; 0000-0003-4866-5952 ; 0000-0003-0394-6283</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.plaphy.2024.108793$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38870681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liistro, Elisabetta</creatorcontrib><creatorcontrib>Battistuzzi, Mariano</creatorcontrib><creatorcontrib>Cocola, Lorenzo</creatorcontrib><creatorcontrib>Claudi, Riccardo</creatorcontrib><creatorcontrib>Poletto, Luca</creatorcontrib><creatorcontrib>La Rocca, Nicoletta</creatorcontrib><title>Synechococcus sp. PCC7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: Potential for astrobiotechnological applications</title><title>Plant physiology and biochemistry</title><addtitle>Plant Physiol Biochem</addtitle><description>Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.
•PCC7335 productivity under a low-visible high-far-red light spectrum is higher than expected.•PCC7335 doesn't activate FaRLiP under a low-visible high-far-red light spectrum, but acclimates trough type-III CA.•Production of phycocyanin can be boosted in PCC7335 with a far-red enriched spectrum.•The anoxic atmosphere enriched in CO2 does not affect cells' productivity nor physiological response.•PCC7335 can produce biomass, phycocyanin and modify an anoxic atmosphere with a low energetic demand.</description><subject>Anoxic atmosphere</subject><subject>BLSS</subject><subject>Chromatic acclimation</subject><subject>Far-red light</subject><subject>FaRLiP</subject><subject>M-dwarfs</subject><subject>Synechococcus sp. PCC7335</subject><issn>0981-9428</issn><issn>1873-2690</issn><issn>1873-2690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UduKFDEQDaK44-ofiOTRl57NpS-JD4IM3mBhF1yfQ6ZSbWfo7sSkZ3F-Y7_YDL36uIGQQ-VUHeocQt5ytuWMt1eHbRxtHE5bwURdSqrT8hnZcNXJSrSaPScbphWvdC3UBXmV84GxwuzkS3IhlepYq_iGPPw4zQhDgABwzDTHLb3d7TopG5owxzBnzHQJtLepSugozsnDUECOCEuy1M6u3PDHw9XkIYUzonaZQo4DlhEf6G1YcF68HWkfErV5SWHvSw2GOYzhl4fyY2McC1h8EXxNXvR2zPjm8b0kP798vtt9q65vvn7ffbquQNR8qRqnG2m7cvpGu5rzdq9Bs9YJofqedZw72TtAgQ1aEKjAsQ5QOwUcQezlJXm_zo0p_D5iXszkM-A42hnDMRtZHOoaoXVbqPVKLQvmnLA3MfnJppPhzJzTMAezpmHOaZg1jdL27lHhuJ_Q_W_6Z38hfFwJWPa895hMBo8zoPOp2Gtc8E8r_AU9TqEt</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liistro, Elisabetta</creator><creator>Battistuzzi, Mariano</creator><creator>Cocola, Lorenzo</creator><creator>Claudi, Riccardo</creator><creator>Poletto, Luca</creator><creator>La Rocca, Nicoletta</creator><general>Elsevier Masson SAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-6302-3747</orcidid><orcidid>https://orcid.org/0000-0003-4866-5952</orcidid><orcidid>https://orcid.org/0000-0003-0394-6283</orcidid></search><sort><creationdate>20240801</creationdate><title>Synechococcus sp. PCC7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: Potential for astrobiotechnological applications</title><author>Liistro, Elisabetta ; Battistuzzi, Mariano ; Cocola, Lorenzo ; Claudi, Riccardo ; Poletto, Luca ; La Rocca, Nicoletta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-5d953a7777f59d4116b9c906d228ff0711d3fdce2e5eac2e8cd07ce9d8c1ec2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anoxic atmosphere</topic><topic>BLSS</topic><topic>Chromatic acclimation</topic><topic>Far-red light</topic><topic>FaRLiP</topic><topic>M-dwarfs</topic><topic>Synechococcus sp. PCC7335</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liistro, Elisabetta</creatorcontrib><creatorcontrib>Battistuzzi, Mariano</creatorcontrib><creatorcontrib>Cocola, Lorenzo</creatorcontrib><creatorcontrib>Claudi, Riccardo</creatorcontrib><creatorcontrib>Poletto, Luca</creatorcontrib><creatorcontrib>La Rocca, Nicoletta</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liistro, Elisabetta</au><au>Battistuzzi, Mariano</au><au>Cocola, Lorenzo</au><au>Claudi, Riccardo</au><au>Poletto, Luca</au><au>La Rocca, Nicoletta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synechococcus sp. PCC7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: Potential for astrobiotechnological applications</atitle><jtitle>Plant physiology and biochemistry</jtitle><addtitle>Plant Physiol Biochem</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>213</volume><spage>108793</spage><pages>108793-</pages><artnum>108793</artnum><issn>0981-9428</issn><issn>1873-2690</issn><eissn>1873-2690</eissn><abstract>Recently, cyanobacteria have gained attention in space exploration to support long-term crewed missions via Bioregenerative Life Support Systems. In this frame, cyanobacteria would provide biomass and profitable biomolecules through oxygenic photosynthesis, uptaking CO2, and releasing breathable O2. Their growth potential and organic matter production will depend on their ability to photoacclimate to different light intensities and spectra, maximizing incident light harvesting. Studying cyanobacteria responses to different light regimes will also benefit the broader field of astrobiology, providing data on the possibility of oxygenic photosynthetic life on planets orbiting stars with emission spectra different than the Sun. Here, we tested the acclimation and productivity of Synechococcus sp. PCC7335 (hereafter PCC7335), capable of Far-Red Light Photoacclimation (FaRLiP) and type III chromatic acclimation (CA3), in an anoxic, CO2-enriched atmosphere and under a spectrum simulating the low energetic light regime of an M-dwarf star, also comparable to a subsuperficial environment. When exposed to the light spectrum, with few photons in the visible (VIS) and rich in far-red (FR), PCC7335 did not activate FaRLiP but acclimated only via CA3, achieving a biomass productivity higher than expected, considering the low VIS light availability, and a higher production of phycocyanin, a valuable pigment, with respect to solar light. Its growth or physiological responses of PCC7335 were not affected by the anoxic atmosphere. In these conditions, PCC7335 efficiently produced O2 and scavenged CO2. Results highlight the photosynthetic plasticity of PCC7335, its suitability for astrobiotechnological applications, and the importance to investigate biodiversity of oxygenic photosynthesis for searching life beyond Earth.
•PCC7335 productivity under a low-visible high-far-red light spectrum is higher than expected.•PCC7335 doesn't activate FaRLiP under a low-visible high-far-red light spectrum, but acclimates trough type-III CA.•Production of phycocyanin can be boosted in PCC7335 with a far-red enriched spectrum.•The anoxic atmosphere enriched in CO2 does not affect cells' productivity nor physiological response.•PCC7335 can produce biomass, phycocyanin and modify an anoxic atmosphere with a low energetic demand.</abstract><cop>France</cop><pub>Elsevier Masson SAS</pub><pmid>38870681</pmid><doi>10.1016/j.plaphy.2024.108793</doi><orcidid>https://orcid.org/0009-0002-6302-3747</orcidid><orcidid>https://orcid.org/0000-0003-4866-5952</orcidid><orcidid>https://orcid.org/0000-0003-0394-6283</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0981-9428 |
ispartof | Plant physiology and biochemistry, 2024-08, Vol.213, p.108793, Article 108793 |
issn | 0981-9428 1873-2690 1873-2690 |
language | eng |
recordid | cdi_proquest_miscellaneous_3068752996 |
source | Access via ScienceDirect (Elsevier) |
subjects | Anoxic atmosphere BLSS Chromatic acclimation Far-red light FaRLiP M-dwarfs Synechococcus sp. PCC7335 |
title | Synechococcus sp. PCC7335 responses to far-red enriched spectra and anoxic/microoxic atmospheres: Potential for astrobiotechnological applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synechococcus%20sp.%20PCC7335%20responses%20to%20far-red%20enriched%20spectra%20and%20anoxic/microoxic%20atmospheres:%20Potential%20for%20astrobiotechnological%20applications&rft.jtitle=Plant%20physiology%20and%20biochemistry&rft.au=Liistro,%20Elisabetta&rft.date=2024-08-01&rft.volume=213&rft.spage=108793&rft.pages=108793-&rft.artnum=108793&rft.issn=0981-9428&rft.eissn=1873-2690&rft_id=info:doi/10.1016/j.plaphy.2024.108793&rft_dat=%3Cproquest_cross%3E3068752996%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068752996&rft_id=info:pmid/38870681&rft_els_id=S0981942824004613&rfr_iscdi=true |