Customizable, biocompatible implants for dorsal nasal augmentation: An in vivo pilot study of eight polylactic acid scaffold designs
Augmentation of the nasal dorsum often requires implantation of structural material. Existing methods include autologous, cadaveric or alloplastic materials and injectable hydrogels. Each of these options is associated with considerable limitations. There is an ongoing need for precise and versatile...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2024-12, Vol.112 (12), p.2086-2097 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2097 |
---|---|
container_issue | 12 |
container_start_page | 2086 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 112 |
creator | O'Connell, Gillian M. Vernice, Nicholas Matavosian, Alicia A. Slyker, Leigh Bender, Ryan J. Dong, Xue Bonassar, Lawrence J. Shin, James Spector, Jason A. |
description | Augmentation of the nasal dorsum often requires implantation of structural material. Existing methods include autologous, cadaveric or alloplastic materials and injectable hydrogels. Each of these options is associated with considerable limitations. There is an ongoing need for precise and versatile implants that produce long‐lasting craniofacial augmentation. Four separate polylactic acid (PLA) dorsal nasal implant designs were 3D‐printed. Two implants had internal PLA rebar of differing porosities and two were designed as “shells” of differing porosities. Shell designs were implanted without infill or with either minced or zested processed decellularized ovine cartilage infill to serve as a “biologic rebar”, yielding eight total treatment groups. Scaffolds were implanted heterotopically on rat dorsa (N = 4 implants per rat) for explant after 3, 6, and 12 months followed by volumetric, histopathologic, and biomechanical analysis. Low porosity implants with either minced cartilage or PLA rebar infill had superior volume retention across all timepoints. Overall, histopathologic and immunohistochemical analysis showed a resolving inflammatory response with an M1/M2 ratio consistently favoring tissue regeneration over the study course. However, xenograft cartilage showed areas of degradation and pro‐inflammatory infiltrate contributing to volume and contour loss over time. Biomechanical analysis revealed all constructs had equilibrium and instantaneous moduli higher than human septal cartilage controls. Biocompatible, degradable polymer implants can induce healthy neotissue ingrowth resulting in guided soft tissue augmentation and offer a simple, customizable and clinically‐translatable alternative to existing craniofacial soft tissue augmentation materials. PLA‐only implants may be superior to combination PLA and xenograft implants due to contour irregularities associated with cartilage degradation. |
doi_str_mv | 10.1002/jbm.a.37764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3068750854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068750854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3724-9af00ff724aa4da77134869868717082c6529fff14f8d25ab324db6808af9ddd3</originalsourceid><addsrcrecordid>eNp90b1v1DAYBnALUdEPmNiRJRYkyOHPxOl2nAotKmKB2XoT24dPThxip-iY-cPxcS0DA4v9WvrpkV89CD2nZEUJYW933bCCFW-aWjxCZ1RKVom2lo8Ps2grztr6FJ2ntCu4JpI9QadcqUZI2p6hX5sl5Tj4n9AF-wZ3PvZxmCD78sR-mAKMOWEXZ2zinCDgEQ4nLNvBjrm4OF7i9Yj9iO_8XcSTDzHjlBezx9Fh67ffMp5i2Afos-8x9N7g1INzMRhsbPLbMT1FJw5Css_u7wv09f3Vl811dfv5w81mfVv1vGGiasER4lwZAYSBpqFcqLpVtWpoQxTra8la5xwVThkmoeNMmK5WRIFrjTH8Ar065k5z_L7YlPXgU29DWdLGJWlOSpQkSopCX_5Dd3GZx_I7zSkVrBGUy6JeH1U_x5Rm6_Q0-wHmvaZEH8rRpRwN-k85Rb-4z1y6wZq_9qGNAtgR_PDB7v-XpT---7Q-pv4G16ubyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114274135</pqid></control><display><type>article</type><title>Customizable, biocompatible implants for dorsal nasal augmentation: An in vivo pilot study of eight polylactic acid scaffold designs</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>O'Connell, Gillian M. ; Vernice, Nicholas ; Matavosian, Alicia A. ; Slyker, Leigh ; Bender, Ryan J. ; Dong, Xue ; Bonassar, Lawrence J. ; Shin, James ; Spector, Jason A.</creator><creatorcontrib>O'Connell, Gillian M. ; Vernice, Nicholas ; Matavosian, Alicia A. ; Slyker, Leigh ; Bender, Ryan J. ; Dong, Xue ; Bonassar, Lawrence J. ; Shin, James ; Spector, Jason A.</creatorcontrib><description>Augmentation of the nasal dorsum often requires implantation of structural material. Existing methods include autologous, cadaveric or alloplastic materials and injectable hydrogels. Each of these options is associated with considerable limitations. There is an ongoing need for precise and versatile implants that produce long‐lasting craniofacial augmentation. Four separate polylactic acid (PLA) dorsal nasal implant designs were 3D‐printed. Two implants had internal PLA rebar of differing porosities and two were designed as “shells” of differing porosities. Shell designs were implanted without infill or with either minced or zested processed decellularized ovine cartilage infill to serve as a “biologic rebar”, yielding eight total treatment groups. Scaffolds were implanted heterotopically on rat dorsa (N = 4 implants per rat) for explant after 3, 6, and 12 months followed by volumetric, histopathologic, and biomechanical analysis. Low porosity implants with either minced cartilage or PLA rebar infill had superior volume retention across all timepoints. Overall, histopathologic and immunohistochemical analysis showed a resolving inflammatory response with an M1/M2 ratio consistently favoring tissue regeneration over the study course. However, xenograft cartilage showed areas of degradation and pro‐inflammatory infiltrate contributing to volume and contour loss over time. Biomechanical analysis revealed all constructs had equilibrium and instantaneous moduli higher than human septal cartilage controls. Biocompatible, degradable polymer implants can induce healthy neotissue ingrowth resulting in guided soft tissue augmentation and offer a simple, customizable and clinically‐translatable alternative to existing craniofacial soft tissue augmentation materials. PLA‐only implants may be superior to combination PLA and xenograft implants due to contour irregularities associated with cartilage degradation.</description><identifier>ISSN: 1549-3296</identifier><identifier>ISSN: 1552-4965</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.37764</identifier><identifier>PMID: 38874519</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>absorbable implants ; Animals ; Biocompatibility ; Biocompatible Materials - chemistry ; Biomechanical engineering ; Biomechanics ; Cadavers ; Cartilage ; Contours ; craniofacial reconstruction ; Degradation ; Implants ; In vivo methods and tests ; Inflammation ; Inflammatory response ; Male ; nasal dorsum ; Nose ; Pilot Projects ; Polyesters - chemistry ; Polylactic acid ; Polymers ; Porosity ; Printing, Three-Dimensional ; Rats ; Rats, Sprague-Dawley ; Rebar ; Regeneration (physiology) ; Scaffolds ; Sheep ; Soft tissues ; three‐dimensional printing ; Tissue engineering ; Tissue Scaffolds - chemistry ; Transplants & implants ; Xenografts ; Xenotransplantation</subject><ispartof>Journal of biomedical materials research. Part A, 2024-12, Vol.112 (12), p.2086-2097</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3724-9af00ff724aa4da77134869868717082c6529fff14f8d25ab324db6808af9ddd3</cites><orcidid>0000-0002-5329-7560 ; 0000-0001-7577-4762 ; 0000-0002-5673-5810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.37764$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.37764$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38874519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>O'Connell, Gillian M.</creatorcontrib><creatorcontrib>Vernice, Nicholas</creatorcontrib><creatorcontrib>Matavosian, Alicia A.</creatorcontrib><creatorcontrib>Slyker, Leigh</creatorcontrib><creatorcontrib>Bender, Ryan J.</creatorcontrib><creatorcontrib>Dong, Xue</creatorcontrib><creatorcontrib>Bonassar, Lawrence J.</creatorcontrib><creatorcontrib>Shin, James</creatorcontrib><creatorcontrib>Spector, Jason A.</creatorcontrib><title>Customizable, biocompatible implants for dorsal nasal augmentation: An in vivo pilot study of eight polylactic acid scaffold designs</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Augmentation of the nasal dorsum often requires implantation of structural material. Existing methods include autologous, cadaveric or alloplastic materials and injectable hydrogels. Each of these options is associated with considerable limitations. There is an ongoing need for precise and versatile implants that produce long‐lasting craniofacial augmentation. Four separate polylactic acid (PLA) dorsal nasal implant designs were 3D‐printed. Two implants had internal PLA rebar of differing porosities and two were designed as “shells” of differing porosities. Shell designs were implanted without infill or with either minced or zested processed decellularized ovine cartilage infill to serve as a “biologic rebar”, yielding eight total treatment groups. Scaffolds were implanted heterotopically on rat dorsa (N = 4 implants per rat) for explant after 3, 6, and 12 months followed by volumetric, histopathologic, and biomechanical analysis. Low porosity implants with either minced cartilage or PLA rebar infill had superior volume retention across all timepoints. Overall, histopathologic and immunohistochemical analysis showed a resolving inflammatory response with an M1/M2 ratio consistently favoring tissue regeneration over the study course. However, xenograft cartilage showed areas of degradation and pro‐inflammatory infiltrate contributing to volume and contour loss over time. Biomechanical analysis revealed all constructs had equilibrium and instantaneous moduli higher than human septal cartilage controls. Biocompatible, degradable polymer implants can induce healthy neotissue ingrowth resulting in guided soft tissue augmentation and offer a simple, customizable and clinically‐translatable alternative to existing craniofacial soft tissue augmentation materials. PLA‐only implants may be superior to combination PLA and xenograft implants due to contour irregularities associated with cartilage degradation.</description><subject>absorbable implants</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomechanical engineering</subject><subject>Biomechanics</subject><subject>Cadavers</subject><subject>Cartilage</subject><subject>Contours</subject><subject>craniofacial reconstruction</subject><subject>Degradation</subject><subject>Implants</subject><subject>In vivo methods and tests</subject><subject>Inflammation</subject><subject>Inflammatory response</subject><subject>Male</subject><subject>nasal dorsum</subject><subject>Nose</subject><subject>Pilot Projects</subject><subject>Polyesters - chemistry</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Porosity</subject><subject>Printing, Three-Dimensional</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rebar</subject><subject>Regeneration (physiology)</subject><subject>Scaffolds</subject><subject>Sheep</subject><subject>Soft tissues</subject><subject>three‐dimensional printing</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Transplants & implants</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1549-3296</issn><issn>1552-4965</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90b1v1DAYBnALUdEPmNiRJRYkyOHPxOl2nAotKmKB2XoT24dPThxip-iY-cPxcS0DA4v9WvrpkV89CD2nZEUJYW933bCCFW-aWjxCZ1RKVom2lo8Ps2grztr6FJ2ntCu4JpI9QadcqUZI2p6hX5sl5Tj4n9AF-wZ3PvZxmCD78sR-mAKMOWEXZ2zinCDgEQ4nLNvBjrm4OF7i9Yj9iO_8XcSTDzHjlBezx9Fh67ffMp5i2Afos-8x9N7g1INzMRhsbPLbMT1FJw5Css_u7wv09f3Vl811dfv5w81mfVv1vGGiasER4lwZAYSBpqFcqLpVtWpoQxTra8la5xwVThkmoeNMmK5WRIFrjTH8Ar065k5z_L7YlPXgU29DWdLGJWlOSpQkSopCX_5Dd3GZx_I7zSkVrBGUy6JeH1U_x5Rm6_Q0-wHmvaZEH8rRpRwN-k85Rb-4z1y6wZq_9qGNAtgR_PDB7v-XpT---7Q-pv4G16ubyw</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>O'Connell, Gillian M.</creator><creator>Vernice, Nicholas</creator><creator>Matavosian, Alicia A.</creator><creator>Slyker, Leigh</creator><creator>Bender, Ryan J.</creator><creator>Dong, Xue</creator><creator>Bonassar, Lawrence J.</creator><creator>Shin, James</creator><creator>Spector, Jason A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5329-7560</orcidid><orcidid>https://orcid.org/0000-0001-7577-4762</orcidid><orcidid>https://orcid.org/0000-0002-5673-5810</orcidid></search><sort><creationdate>202412</creationdate><title>Customizable, biocompatible implants for dorsal nasal augmentation: An in vivo pilot study of eight polylactic acid scaffold designs</title><author>O'Connell, Gillian M. ; Vernice, Nicholas ; Matavosian, Alicia A. ; Slyker, Leigh ; Bender, Ryan J. ; Dong, Xue ; Bonassar, Lawrence J. ; Shin, James ; Spector, Jason A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3724-9af00ff724aa4da77134869868717082c6529fff14f8d25ab324db6808af9ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorbable implants</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomechanical engineering</topic><topic>Biomechanics</topic><topic>Cadavers</topic><topic>Cartilage</topic><topic>Contours</topic><topic>craniofacial reconstruction</topic><topic>Degradation</topic><topic>Implants</topic><topic>In vivo methods and tests</topic><topic>Inflammation</topic><topic>Inflammatory response</topic><topic>Male</topic><topic>nasal dorsum</topic><topic>Nose</topic><topic>Pilot Projects</topic><topic>Polyesters - chemistry</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Porosity</topic><topic>Printing, Three-Dimensional</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rebar</topic><topic>Regeneration (physiology)</topic><topic>Scaffolds</topic><topic>Sheep</topic><topic>Soft tissues</topic><topic>three‐dimensional printing</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Transplants & implants</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O'Connell, Gillian M.</creatorcontrib><creatorcontrib>Vernice, Nicholas</creatorcontrib><creatorcontrib>Matavosian, Alicia A.</creatorcontrib><creatorcontrib>Slyker, Leigh</creatorcontrib><creatorcontrib>Bender, Ryan J.</creatorcontrib><creatorcontrib>Dong, Xue</creatorcontrib><creatorcontrib>Bonassar, Lawrence J.</creatorcontrib><creatorcontrib>Shin, James</creatorcontrib><creatorcontrib>Spector, Jason A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O'Connell, Gillian M.</au><au>Vernice, Nicholas</au><au>Matavosian, Alicia A.</au><au>Slyker, Leigh</au><au>Bender, Ryan J.</au><au>Dong, Xue</au><au>Bonassar, Lawrence J.</au><au>Shin, James</au><au>Spector, Jason A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customizable, biocompatible implants for dorsal nasal augmentation: An in vivo pilot study of eight polylactic acid scaffold designs</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2024-12</date><risdate>2024</risdate><volume>112</volume><issue>12</issue><spage>2086</spage><epage>2097</epage><pages>2086-2097</pages><issn>1549-3296</issn><issn>1552-4965</issn><eissn>1552-4965</eissn><abstract>Augmentation of the nasal dorsum often requires implantation of structural material. Existing methods include autologous, cadaveric or alloplastic materials and injectable hydrogels. Each of these options is associated with considerable limitations. There is an ongoing need for precise and versatile implants that produce long‐lasting craniofacial augmentation. Four separate polylactic acid (PLA) dorsal nasal implant designs were 3D‐printed. Two implants had internal PLA rebar of differing porosities and two were designed as “shells” of differing porosities. Shell designs were implanted without infill or with either minced or zested processed decellularized ovine cartilage infill to serve as a “biologic rebar”, yielding eight total treatment groups. Scaffolds were implanted heterotopically on rat dorsa (N = 4 implants per rat) for explant after 3, 6, and 12 months followed by volumetric, histopathologic, and biomechanical analysis. Low porosity implants with either minced cartilage or PLA rebar infill had superior volume retention across all timepoints. Overall, histopathologic and immunohistochemical analysis showed a resolving inflammatory response with an M1/M2 ratio consistently favoring tissue regeneration over the study course. However, xenograft cartilage showed areas of degradation and pro‐inflammatory infiltrate contributing to volume and contour loss over time. Biomechanical analysis revealed all constructs had equilibrium and instantaneous moduli higher than human septal cartilage controls. Biocompatible, degradable polymer implants can induce healthy neotissue ingrowth resulting in guided soft tissue augmentation and offer a simple, customizable and clinically‐translatable alternative to existing craniofacial soft tissue augmentation materials. PLA‐only implants may be superior to combination PLA and xenograft implants due to contour irregularities associated with cartilage degradation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>38874519</pmid><doi>10.1002/jbm.a.37764</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5329-7560</orcidid><orcidid>https://orcid.org/0000-0001-7577-4762</orcidid><orcidid>https://orcid.org/0000-0002-5673-5810</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2024-12, Vol.112 (12), p.2086-2097 |
issn | 1549-3296 1552-4965 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_3068750854 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | absorbable implants Animals Biocompatibility Biocompatible Materials - chemistry Biomechanical engineering Biomechanics Cadavers Cartilage Contours craniofacial reconstruction Degradation Implants In vivo methods and tests Inflammation Inflammatory response Male nasal dorsum Nose Pilot Projects Polyesters - chemistry Polylactic acid Polymers Porosity Printing, Three-Dimensional Rats Rats, Sprague-Dawley Rebar Regeneration (physiology) Scaffolds Sheep Soft tissues three‐dimensional printing Tissue engineering Tissue Scaffolds - chemistry Transplants & implants Xenografts Xenotransplantation |
title | Customizable, biocompatible implants for dorsal nasal augmentation: An in vivo pilot study of eight polylactic acid scaffold designs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customizable,%20biocompatible%20implants%20for%20dorsal%20nasal%20augmentation:%20An%20in%20vivo%20pilot%20study%20of%20eight%20polylactic%20acid%20scaffold%20designs&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=O'Connell,%20Gillian%20M.&rft.date=2024-12&rft.volume=112&rft.issue=12&rft.spage=2086&rft.epage=2097&rft.pages=2086-2097&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.37764&rft_dat=%3Cproquest_cross%3E3068750854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114274135&rft_id=info:pmid/38874519&rfr_iscdi=true |