Simultaneous Protein Colorful Imaging via Raman Signal Classification
Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding....
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-07, Vol.24 (28), p.8595-8601 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8601 |
---|---|
container_issue | 28 |
container_start_page | 8595 |
container_title | Nano letters |
container_volume | 24 |
creator | Seo, Dongkwon Sun, Hayeon Choi, Yeonho |
description | Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL–1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments. |
doi_str_mv | 10.1021/acs.nanolett.4c01654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3067914315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067914315</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-fd14397616ad9fa97f8c1eceb5f22c33dca85e41df6fac77f12a42d1f8c3d1fe3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFj7y8RFGBSpVAFNbW1LErV45d4gSJv8dVWpZsZmZx752Zg9AtwXOCKXkAGeYOnLeq7-eZxKTIszM0JTnDacE5Pf-bq2yCrkLYYYw5y_ElmrCqKjiu6BQt1qYdbA9O-SEkb53vlXFJ7a3v9GCTZQtb47bJt4HkHVpwydpsHdikthCC0UZCb7y7RhcabFA3xz5Dn0-Lj_olXb0-L-vHVQqUl32qG5IxXhakgIZr4KWuJFFSbXJNqWSskVDlKiONLjTIstSEQkYbEmUsVsVm6H7M3Xf-a1ChF60JUlk73i8YLkoed8THZygbpbLzIXRKi31nWuh-BMHiAFBEgOIEUBwBRtvdccOwaVXzZzoRiwI8Cg72nR-6SCP8n_kL2jaBnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067914315</pqid></control><display><type>article</type><title>Simultaneous Protein Colorful Imaging via Raman Signal Classification</title><source>ACS Publications</source><source>MEDLINE</source><creator>Seo, Dongkwon ; Sun, Hayeon ; Choi, Yeonho</creator><creatorcontrib>Seo, Dongkwon ; Sun, Hayeon ; Choi, Yeonho</creatorcontrib><description>Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL–1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c01654</identifier><identifier>PMID: 38869082</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Carcinoembryonic Antigen - chemistry ; Cattle ; Color ; ErbB Receptors - chemistry ; Microfluidics ; Models, Molecular ; Molecular Conformation ; Serum Albumin, Bovine - chemistry ; Spectrum Analysis, Raman - methods</subject><ispartof>Nano letters, 2024-07, Vol.24 (28), p.8595-8601</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a297t-fd14397616ad9fa97f8c1eceb5f22c33dca85e41df6fac77f12a42d1f8c3d1fe3</cites><orcidid>0000-0003-2018-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.4c01654$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c01654$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38869082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Dongkwon</creatorcontrib><creatorcontrib>Sun, Hayeon</creatorcontrib><creatorcontrib>Choi, Yeonho</creatorcontrib><title>Simultaneous Protein Colorful Imaging via Raman Signal Classification</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL–1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.</description><subject>Animals</subject><subject>Carcinoembryonic Antigen - chemistry</subject><subject>Cattle</subject><subject>Color</subject><subject>ErbB Receptors - chemistry</subject><subject>Microfluidics</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFj7y8RFGBSpVAFNbW1LErV45d4gSJv8dVWpZsZmZx752Zg9AtwXOCKXkAGeYOnLeq7-eZxKTIszM0JTnDacE5Pf-bq2yCrkLYYYw5y_ElmrCqKjiu6BQt1qYdbA9O-SEkb53vlXFJ7a3v9GCTZQtb47bJt4HkHVpwydpsHdikthCC0UZCb7y7RhcabFA3xz5Dn0-Lj_olXb0-L-vHVQqUl32qG5IxXhakgIZr4KWuJFFSbXJNqWSskVDlKiONLjTIstSEQkYbEmUsVsVm6H7M3Xf-a1ChF60JUlk73i8YLkoed8THZygbpbLzIXRKi31nWuh-BMHiAFBEgOIEUBwBRtvdccOwaVXzZzoRiwI8Cg72nR-6SCP8n_kL2jaBnQ</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Seo, Dongkwon</creator><creator>Sun, Hayeon</creator><creator>Choi, Yeonho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2018-3599</orcidid></search><sort><creationdate>20240717</creationdate><title>Simultaneous Protein Colorful Imaging via Raman Signal Classification</title><author>Seo, Dongkwon ; Sun, Hayeon ; Choi, Yeonho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-fd14397616ad9fa97f8c1eceb5f22c33dca85e41df6fac77f12a42d1f8c3d1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Carcinoembryonic Antigen - chemistry</topic><topic>Cattle</topic><topic>Color</topic><topic>ErbB Receptors - chemistry</topic><topic>Microfluidics</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Dongkwon</creatorcontrib><creatorcontrib>Sun, Hayeon</creatorcontrib><creatorcontrib>Choi, Yeonho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Dongkwon</au><au>Sun, Hayeon</au><au>Choi, Yeonho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Protein Colorful Imaging via Raman Signal Classification</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-07-17</date><risdate>2024</risdate><volume>24</volume><issue>28</issue><spage>8595</spage><epage>8601</epage><pages>8595-8601</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL–1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38869082</pmid><doi>10.1021/acs.nanolett.4c01654</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2018-3599</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2024-07, Vol.24 (28), p.8595-8601 |
issn | 1530-6984 1530-6992 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_3067914315 |
source | ACS Publications; MEDLINE |
subjects | Animals Carcinoembryonic Antigen - chemistry Cattle Color ErbB Receptors - chemistry Microfluidics Models, Molecular Molecular Conformation Serum Albumin, Bovine - chemistry Spectrum Analysis, Raman - methods |
title | Simultaneous Protein Colorful Imaging via Raman Signal Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Protein%20Colorful%20Imaging%20via%20Raman%20Signal%20Classification&rft.jtitle=Nano%20letters&rft.au=Seo,%20Dongkwon&rft.date=2024-07-17&rft.volume=24&rft.issue=28&rft.spage=8595&rft.epage=8601&rft.pages=8595-8601&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c01654&rft_dat=%3Cproquest_cross%3E3067914315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067914315&rft_id=info:pmid/38869082&rfr_iscdi=true |