Simultaneous Protein Colorful Imaging via Raman Signal Classification

Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-07, Vol.24 (28), p.8595-8601
Hauptverfasser: Seo, Dongkwon, Sun, Hayeon, Choi, Yeonho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8601
container_issue 28
container_start_page 8595
container_title Nano letters
container_volume 24
creator Seo, Dongkwon
Sun, Hayeon
Choi, Yeonho
description Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL–1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.
doi_str_mv 10.1021/acs.nanolett.4c01654
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3067914315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3067914315</sourcerecordid><originalsourceid>FETCH-LOGICAL-a297t-fd14397616ad9fa97f8c1eceb5f22c33dca85e41df6fac77f12a42d1f8c3d1fe3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFj7y8RFGBSpVAFNbW1LErV45d4gSJv8dVWpZsZmZx752Zg9AtwXOCKXkAGeYOnLeq7-eZxKTIszM0JTnDacE5Pf-bq2yCrkLYYYw5y_ElmrCqKjiu6BQt1qYdbA9O-SEkb53vlXFJ7a3v9GCTZQtb47bJt4HkHVpwydpsHdikthCC0UZCb7y7RhcabFA3xz5Dn0-Lj_olXb0-L-vHVQqUl32qG5IxXhakgIZr4KWuJFFSbXJNqWSskVDlKiONLjTIstSEQkYbEmUsVsVm6H7M3Xf-a1ChF60JUlk73i8YLkoed8THZygbpbLzIXRKi31nWuh-BMHiAFBEgOIEUBwBRtvdccOwaVXzZzoRiwI8Cg72nR-6SCP8n_kL2jaBnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3067914315</pqid></control><display><type>article</type><title>Simultaneous Protein Colorful Imaging via Raman Signal Classification</title><source>ACS Publications</source><source>MEDLINE</source><creator>Seo, Dongkwon ; Sun, Hayeon ; Choi, Yeonho</creator><creatorcontrib>Seo, Dongkwon ; Sun, Hayeon ; Choi, Yeonho</creatorcontrib><description>Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL–1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.</description><identifier>ISSN: 1530-6984</identifier><identifier>ISSN: 1530-6992</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.4c01654</identifier><identifier>PMID: 38869082</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Carcinoembryonic Antigen - chemistry ; Cattle ; Color ; ErbB Receptors - chemistry ; Microfluidics ; Models, Molecular ; Molecular Conformation ; Serum Albumin, Bovine - chemistry ; Spectrum Analysis, Raman - methods</subject><ispartof>Nano letters, 2024-07, Vol.24 (28), p.8595-8601</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a297t-fd14397616ad9fa97f8c1eceb5f22c33dca85e41df6fac77f12a42d1f8c3d1fe3</cites><orcidid>0000-0003-2018-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.4c01654$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.4c01654$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38869082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seo, Dongkwon</creatorcontrib><creatorcontrib>Sun, Hayeon</creatorcontrib><creatorcontrib>Choi, Yeonho</creatorcontrib><title>Simultaneous Protein Colorful Imaging via Raman Signal Classification</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL–1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.</description><subject>Animals</subject><subject>Carcinoembryonic Antigen - chemistry</subject><subject>Cattle</subject><subject>Color</subject><subject>ErbB Receptors - chemistry</subject><subject>Microfluidics</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Spectrum Analysis, Raman - methods</subject><issn>1530-6984</issn><issn>1530-6992</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySbFj7y8RFGBSpVAFNbW1LErV45d4gSJv8dVWpZsZmZx752Zg9AtwXOCKXkAGeYOnLeq7-eZxKTIszM0JTnDacE5Pf-bq2yCrkLYYYw5y_ElmrCqKjiu6BQt1qYdbA9O-SEkb53vlXFJ7a3v9GCTZQtb47bJt4HkHVpwydpsHdikthCC0UZCb7y7RhcabFA3xz5Dn0-Lj_olXb0-L-vHVQqUl32qG5IxXhakgIZr4KWuJFFSbXJNqWSskVDlKiONLjTIstSEQkYbEmUsVsVm6H7M3Xf-a1ChF60JUlk73i8YLkoed8THZygbpbLzIXRKi31nWuh-BMHiAFBEgOIEUBwBRtvdccOwaVXzZzoRiwI8Cg72nR-6SCP8n_kL2jaBnQ</recordid><startdate>20240717</startdate><enddate>20240717</enddate><creator>Seo, Dongkwon</creator><creator>Sun, Hayeon</creator><creator>Choi, Yeonho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2018-3599</orcidid></search><sort><creationdate>20240717</creationdate><title>Simultaneous Protein Colorful Imaging via Raman Signal Classification</title><author>Seo, Dongkwon ; Sun, Hayeon ; Choi, Yeonho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a297t-fd14397616ad9fa97f8c1eceb5f22c33dca85e41df6fac77f12a42d1f8c3d1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Carcinoembryonic Antigen - chemistry</topic><topic>Cattle</topic><topic>Color</topic><topic>ErbB Receptors - chemistry</topic><topic>Microfluidics</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Spectrum Analysis, Raman - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Dongkwon</creatorcontrib><creatorcontrib>Sun, Hayeon</creatorcontrib><creatorcontrib>Choi, Yeonho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Dongkwon</au><au>Sun, Hayeon</au><au>Choi, Yeonho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Protein Colorful Imaging via Raman Signal Classification</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2024-07-17</date><risdate>2024</risdate><volume>24</volume><issue>28</issue><spage>8595</spage><epage>8601</epage><pages>8595-8601</pages><issn>1530-6984</issn><issn>1530-6992</issn><eissn>1530-6992</eissn><abstract>Protein imaging aids diagnosis and drug development by revealing protein–drug interactions or protein levels. However, the challenges of imaging multiple proteins, reduced sensitivity, and high reliance on specific protein properties such as Raman peaks or refractive index hinder the understanding. Here, we introduce multiprotein colorful imaging through Raman signal classification. Our method utilized machine learning-assisted classification of Raman signals, which are the distinctive features of label-free proteins. As a result, three types of proteins could be imaged simultaneously. In addition, we could quantify individual proteins from a mixture of multiple proteins over a wide detection range (10 fg/mL–1 μg/mL). These results showed a 1000-fold improvement in sensitivity and a 30-fold increase in the upper limit of detection compared to existing methods. These advances will enhance our understanding of biology and facilitate the development of disease diagnoses and treatments.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38869082</pmid><doi>10.1021/acs.nanolett.4c01654</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2018-3599</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2024-07, Vol.24 (28), p.8595-8601
issn 1530-6984
1530-6992
1530-6992
language eng
recordid cdi_proquest_miscellaneous_3067914315
source ACS Publications; MEDLINE
subjects Animals
Carcinoembryonic Antigen - chemistry
Cattle
Color
ErbB Receptors - chemistry
Microfluidics
Models, Molecular
Molecular Conformation
Serum Albumin, Bovine - chemistry
Spectrum Analysis, Raman - methods
title Simultaneous Protein Colorful Imaging via Raman Signal Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T19%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Protein%20Colorful%20Imaging%20via%20Raman%20Signal%20Classification&rft.jtitle=Nano%20letters&rft.au=Seo,%20Dongkwon&rft.date=2024-07-17&rft.volume=24&rft.issue=28&rft.spage=8595&rft.epage=8601&rft.pages=8595-8601&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.4c01654&rft_dat=%3Cproquest_cross%3E3067914315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3067914315&rft_id=info:pmid/38869082&rfr_iscdi=true