Clinical research text summarization method based on fusion of domain knowledge

[Display omitted] The objective of this study is to integrate PICO knowledge into the clinical research text summarization process, aiming to enhance the model’s comprehension of biomedical texts while capturing crucial content from the perspective of summary readers, ultimately improving the qualit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical informatics 2024-08, Vol.156, p.104668, Article 104668
Hauptverfasser: Jiang, Shiwei, Zheng, Qingxiao, Li, Taiyong, Luo, Shuanghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104668
container_title Journal of biomedical informatics
container_volume 156
creator Jiang, Shiwei
Zheng, Qingxiao
Li, Taiyong
Luo, Shuanghong
description [Display omitted] The objective of this study is to integrate PICO knowledge into the clinical research text summarization process, aiming to enhance the model’s comprehension of biomedical texts while capturing crucial content from the perspective of summary readers, ultimately improving the quality of summaries. We propose a clinical research text summarization method called DKGE-PEGASUS (Domain-Knowledge and Graph Convolutional Enhanced PEGASUS), which is based on integrating domain knowledge. The model mainly consists of three components: a PICO label prediction module, a text information re-mining unit based on Graph Convolutional Neural Networks (GCN), and a pre-trained summarization model. First, the PICO label prediction module is used to identify PICO elements in clinical research texts while obtaining word embeddings enriched with PICO knowledge. Then, we use GCN to reinforce the encoder of the pre-trained summarization model to achieve deeper text information mining while explicitly injecting PICO knowledge. Finally, the outputs of the PICO label prediction module, the GCN text information re-mining unit, and the encoder of the pre-trained model are fused to produce the final coding results, which are then decoded by the decoder to generate summaries. Experiments conducted on two datasets, PubMed and CDSR, demonstrated the effectiveness of our method. The Rouge-1 scores achieved were 42.64 and 38.57, respectively. Furthermore, the quality of our summarization results was found to significantly outperform the baseline model in comparisons of summarization results for a segment of biomedical text. The method proposed in this paper is better equipped to identify critical elements in clinical research texts and produce a higher-quality summary.
doi_str_mv 10.1016/j.jbi.2024.104668
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066793318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1532046424000868</els_id><sourcerecordid>3066793318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-9154e594240fa662356ad9c75d0070dc1acdfb81e1057206443f88cf101efd223</originalsourceid><addsrcrecordid>eNp9kElPwzAUhC0EoqXwA7igHLm02PGSVJxQxSYh9QJny7WfqUMSFzth-_W4SumR01s0M9J8CJ0TPCOYiKtqVq3cLMc5SzcTojxAY8JpPsWsxIf7XbAROomxwpgQzsUxGtGy5EVBizFaLmrXOq3qLEAEFfQ66-Cry2LfNCq4H9U532YNdGtvspWKYLJ02z5u395mxjfKtdlb6z9rMK9wio6sqiOc7eYEvdzdPi8epk_L-8fFzdNUU8y76ZxwBnzOcoatEiKnXCgz1wU3GBfYaKK0sauSAMG8yLFgjNqy1DbVBmvynE7Q5ZC7Cf69h9jJxkUNda1a8H2UFAtRzCklZZKSQaqDjzGAlZvgUrlvSbDccpSVTBzllqMcOCbPxS6-XzVg9o4_cElwPQgglfxwEGTUDloNxgXQnTTe_RP_C_5Tgos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066793318</pqid></control><display><type>article</type><title>Clinical research text summarization method based on fusion of domain knowledge</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Shiwei ; Zheng, Qingxiao ; Li, Taiyong ; Luo, Shuanghong</creator><creatorcontrib>Jiang, Shiwei ; Zheng, Qingxiao ; Li, Taiyong ; Luo, Shuanghong</creatorcontrib><description>[Display omitted] The objective of this study is to integrate PICO knowledge into the clinical research text summarization process, aiming to enhance the model’s comprehension of biomedical texts while capturing crucial content from the perspective of summary readers, ultimately improving the quality of summaries. We propose a clinical research text summarization method called DKGE-PEGASUS (Domain-Knowledge and Graph Convolutional Enhanced PEGASUS), which is based on integrating domain knowledge. The model mainly consists of three components: a PICO label prediction module, a text information re-mining unit based on Graph Convolutional Neural Networks (GCN), and a pre-trained summarization model. First, the PICO label prediction module is used to identify PICO elements in clinical research texts while obtaining word embeddings enriched with PICO knowledge. Then, we use GCN to reinforce the encoder of the pre-trained summarization model to achieve deeper text information mining while explicitly injecting PICO knowledge. Finally, the outputs of the PICO label prediction module, the GCN text information re-mining unit, and the encoder of the pre-trained model are fused to produce the final coding results, which are then decoded by the decoder to generate summaries. Experiments conducted on two datasets, PubMed and CDSR, demonstrated the effectiveness of our method. The Rouge-1 scores achieved were 42.64 and 38.57, respectively. Furthermore, the quality of our summarization results was found to significantly outperform the baseline model in comparisons of summarization results for a segment of biomedical text. The method proposed in this paper is better equipped to identify critical elements in clinical research texts and produce a higher-quality summary.</description><identifier>ISSN: 1532-0464</identifier><identifier>ISSN: 1532-0480</identifier><identifier>EISSN: 1532-0480</identifier><identifier>DOI: 10.1016/j.jbi.2024.104668</identifier><identifier>PMID: 38857737</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Automatic text summarization ; Domain knowledge fusion ; Graph convolutional neural networks ; PICO knowledge ; Pre-trained models</subject><ispartof>Journal of biomedical informatics, 2024-08, Vol.156, p.104668, Article 104668</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-9154e594240fa662356ad9c75d0070dc1acdfb81e1057206443f88cf101efd223</cites><orcidid>0000-0003-0255-7876 ; 0000-0002-5552-160X ; 0000-0002-1546-8015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1532046424000868$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38857737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Shiwei</creatorcontrib><creatorcontrib>Zheng, Qingxiao</creatorcontrib><creatorcontrib>Li, Taiyong</creatorcontrib><creatorcontrib>Luo, Shuanghong</creatorcontrib><title>Clinical research text summarization method based on fusion of domain knowledge</title><title>Journal of biomedical informatics</title><addtitle>J Biomed Inform</addtitle><description>[Display omitted] The objective of this study is to integrate PICO knowledge into the clinical research text summarization process, aiming to enhance the model’s comprehension of biomedical texts while capturing crucial content from the perspective of summary readers, ultimately improving the quality of summaries. We propose a clinical research text summarization method called DKGE-PEGASUS (Domain-Knowledge and Graph Convolutional Enhanced PEGASUS), which is based on integrating domain knowledge. The model mainly consists of three components: a PICO label prediction module, a text information re-mining unit based on Graph Convolutional Neural Networks (GCN), and a pre-trained summarization model. First, the PICO label prediction module is used to identify PICO elements in clinical research texts while obtaining word embeddings enriched with PICO knowledge. Then, we use GCN to reinforce the encoder of the pre-trained summarization model to achieve deeper text information mining while explicitly injecting PICO knowledge. Finally, the outputs of the PICO label prediction module, the GCN text information re-mining unit, and the encoder of the pre-trained model are fused to produce the final coding results, which are then decoded by the decoder to generate summaries. Experiments conducted on two datasets, PubMed and CDSR, demonstrated the effectiveness of our method. The Rouge-1 scores achieved were 42.64 and 38.57, respectively. Furthermore, the quality of our summarization results was found to significantly outperform the baseline model in comparisons of summarization results for a segment of biomedical text. The method proposed in this paper is better equipped to identify critical elements in clinical research texts and produce a higher-quality summary.</description><subject>Automatic text summarization</subject><subject>Domain knowledge fusion</subject><subject>Graph convolutional neural networks</subject><subject>PICO knowledge</subject><subject>Pre-trained models</subject><issn>1532-0464</issn><issn>1532-0480</issn><issn>1532-0480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAUhC0EoqXwA7igHLm02PGSVJxQxSYh9QJny7WfqUMSFzth-_W4SumR01s0M9J8CJ0TPCOYiKtqVq3cLMc5SzcTojxAY8JpPsWsxIf7XbAROomxwpgQzsUxGtGy5EVBizFaLmrXOq3qLEAEFfQ66-Cry2LfNCq4H9U532YNdGtvspWKYLJ02z5u395mxjfKtdlb6z9rMK9wio6sqiOc7eYEvdzdPi8epk_L-8fFzdNUU8y76ZxwBnzOcoatEiKnXCgz1wU3GBfYaKK0sauSAMG8yLFgjNqy1DbVBmvynE7Q5ZC7Cf69h9jJxkUNda1a8H2UFAtRzCklZZKSQaqDjzGAlZvgUrlvSbDccpSVTBzllqMcOCbPxS6-XzVg9o4_cElwPQgglfxwEGTUDloNxgXQnTTe_RP_C_5Tgos</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Jiang, Shiwei</creator><creator>Zheng, Qingxiao</creator><creator>Li, Taiyong</creator><creator>Luo, Shuanghong</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0255-7876</orcidid><orcidid>https://orcid.org/0000-0002-5552-160X</orcidid><orcidid>https://orcid.org/0000-0002-1546-8015</orcidid></search><sort><creationdate>20240801</creationdate><title>Clinical research text summarization method based on fusion of domain knowledge</title><author>Jiang, Shiwei ; Zheng, Qingxiao ; Li, Taiyong ; Luo, Shuanghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-9154e594240fa662356ad9c75d0070dc1acdfb81e1057206443f88cf101efd223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic text summarization</topic><topic>Domain knowledge fusion</topic><topic>Graph convolutional neural networks</topic><topic>PICO knowledge</topic><topic>Pre-trained models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Shiwei</creatorcontrib><creatorcontrib>Zheng, Qingxiao</creatorcontrib><creatorcontrib>Li, Taiyong</creatorcontrib><creatorcontrib>Luo, Shuanghong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Shiwei</au><au>Zheng, Qingxiao</au><au>Li, Taiyong</au><au>Luo, Shuanghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical research text summarization method based on fusion of domain knowledge</atitle><jtitle>Journal of biomedical informatics</jtitle><addtitle>J Biomed Inform</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>156</volume><spage>104668</spage><pages>104668-</pages><artnum>104668</artnum><issn>1532-0464</issn><issn>1532-0480</issn><eissn>1532-0480</eissn><abstract>[Display omitted] The objective of this study is to integrate PICO knowledge into the clinical research text summarization process, aiming to enhance the model’s comprehension of biomedical texts while capturing crucial content from the perspective of summary readers, ultimately improving the quality of summaries. We propose a clinical research text summarization method called DKGE-PEGASUS (Domain-Knowledge and Graph Convolutional Enhanced PEGASUS), which is based on integrating domain knowledge. The model mainly consists of three components: a PICO label prediction module, a text information re-mining unit based on Graph Convolutional Neural Networks (GCN), and a pre-trained summarization model. First, the PICO label prediction module is used to identify PICO elements in clinical research texts while obtaining word embeddings enriched with PICO knowledge. Then, we use GCN to reinforce the encoder of the pre-trained summarization model to achieve deeper text information mining while explicitly injecting PICO knowledge. Finally, the outputs of the PICO label prediction module, the GCN text information re-mining unit, and the encoder of the pre-trained model are fused to produce the final coding results, which are then decoded by the decoder to generate summaries. Experiments conducted on two datasets, PubMed and CDSR, demonstrated the effectiveness of our method. The Rouge-1 scores achieved were 42.64 and 38.57, respectively. Furthermore, the quality of our summarization results was found to significantly outperform the baseline model in comparisons of summarization results for a segment of biomedical text. The method proposed in this paper is better equipped to identify critical elements in clinical research texts and produce a higher-quality summary.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38857737</pmid><doi>10.1016/j.jbi.2024.104668</doi><orcidid>https://orcid.org/0000-0003-0255-7876</orcidid><orcidid>https://orcid.org/0000-0002-5552-160X</orcidid><orcidid>https://orcid.org/0000-0002-1546-8015</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0464
ispartof Journal of biomedical informatics, 2024-08, Vol.156, p.104668, Article 104668
issn 1532-0464
1532-0480
1532-0480
language eng
recordid cdi_proquest_miscellaneous_3066793318
source Elsevier ScienceDirect Journals
subjects Automatic text summarization
Domain knowledge fusion
Graph convolutional neural networks
PICO knowledge
Pre-trained models
title Clinical research text summarization method based on fusion of domain knowledge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T23%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical%20research%20text%20summarization%20method%20based%20on%20fusion%20of%20domain%20knowledge&rft.jtitle=Journal%20of%20biomedical%20informatics&rft.au=Jiang,%20Shiwei&rft.date=2024-08-01&rft.volume=156&rft.spage=104668&rft.pages=104668-&rft.artnum=104668&rft.issn=1532-0464&rft.eissn=1532-0480&rft_id=info:doi/10.1016/j.jbi.2024.104668&rft_dat=%3Cproquest_cross%3E3066793318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066793318&rft_id=info:pmid/38857737&rft_els_id=S1532046424000868&rfr_iscdi=true