Detection of oral cancer and oral potentially malignant disorders using artificial intelligence‐based image analysis

Background We aimed to construct an artificial intelligence‐based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single‐lens reflex camera. Subjects and methods We used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Head & neck 2024-09, Vol.46 (9), p.2253-2260
Hauptverfasser: Kouketsu, Atsumu, Doi, Chiaki, Tanaka, Hiroaki, Araki, Takashi, Nakayama, Rina, Toyooka, Tsuguyoshi, Hiyama, Satoshi, Iikubo, Masahiro, Osaka, Ken, Sasaki, Keiichi, Nagai, Hirokazu, Sugiura, Tsuyoshi, Yamauchi, Kensuke, Kuroda, Kanako, Yanagisawa, Yuta, Miyashita, Hitoshi, Kajita, Tomonari, Iwama, Ryosuke, Kurobane, Tsuyoshi, Takahashi, Tetsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2260
container_issue 9
container_start_page 2253
container_title Head & neck
container_volume 46
creator Kouketsu, Atsumu
Doi, Chiaki
Tanaka, Hiroaki
Araki, Takashi
Nakayama, Rina
Toyooka, Tsuguyoshi
Hiyama, Satoshi
Iikubo, Masahiro
Osaka, Ken
Sasaki, Keiichi
Nagai, Hirokazu
Sugiura, Tsuyoshi
Yamauchi, Kensuke
Kuroda, Kanako
Yanagisawa, Yuta
Miyashita, Hitoshi
Kajita, Tomonari
Iwama, Ryosuke
Kurobane, Tsuyoshi
Takahashi, Tetsu
description Background We aimed to construct an artificial intelligence‐based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single‐lens reflex camera. Subjects and methods We used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OSCC), leukoplakia, and other oral mucosal diseases. An object detection model was constructed using a Single Shot Multibox Detector to detect oral diseases and their locations using images. The model was trained using 523 images of oral cancer, and its performance was evaluated using images of oral cancer (n = 66), leukoplakia (n = 49), and other oral diseases (n = 405). Results For the detection of only OSCC versus OSCC and leukoplakia, the model demonstrated a sensitivity of 93.9% versus 83.7%, a negative predictive value of 98.8% versus 94.5%, and a specificity of 81.2% versus 81.2%. Conclusions Our proposed model is a potential diagnostic tool for oral diseases.
doi_str_mv 10.1002/hed.27843
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066790313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089816807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2783-98f5c939d4d36b7b39007608392d47a8eb03dd7e4fc3ee0f9fd0142fa70c659a3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EoqVw4AWQJS5wSDvJuLF9RG2hSJW4wDly7PHiKmsvdgLaG4_QZ-yT4CXtBYmTx6NPn2bmZ-x1C6ctQHf2ndxpJ5XAJ-y4BS0bQCGfHmqBDYIUR-xFKbcAgL3onrMjVKoHCXjMfl7STHYOKfLkecpm4tZES5mb6Nb_Ls0U52Cmac-3ZgqbaOLMXSgpO8qFLyXEDTd5Dj7YivEQZ5oqR9Vz__tuNIUcD1uzoSo1076E8pI982Yq9OrhPWHfPl59vbhubr58-nzx4aaxdR9stPLnVqN2wmE_yhE1gOxBoe6ckEbRCOicJOEtEoHX3kErOm8k2P5cGzxh71bvLqcfC5V52IZi63QmUlrKgND3UgO2WNG3_6C3acl13gOltGp7BbJS71fK5lRKJj_scl0t74cWhkMYQw1j-BtGZd88GJdxW7uP5OP1K3C2Ar_CRPv_m4brq8tV-Qd6PZV7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089816807</pqid></control><display><type>article</type><title>Detection of oral cancer and oral potentially malignant disorders using artificial intelligence‐based image analysis</title><source>Wiley Online Library All Journals</source><creator>Kouketsu, Atsumu ; Doi, Chiaki ; Tanaka, Hiroaki ; Araki, Takashi ; Nakayama, Rina ; Toyooka, Tsuguyoshi ; Hiyama, Satoshi ; Iikubo, Masahiro ; Osaka, Ken ; Sasaki, Keiichi ; Nagai, Hirokazu ; Sugiura, Tsuyoshi ; Yamauchi, Kensuke ; Kuroda, Kanako ; Yanagisawa, Yuta ; Miyashita, Hitoshi ; Kajita, Tomonari ; Iwama, Ryosuke ; Kurobane, Tsuyoshi ; Takahashi, Tetsu</creator><creatorcontrib>Kouketsu, Atsumu ; Doi, Chiaki ; Tanaka, Hiroaki ; Araki, Takashi ; Nakayama, Rina ; Toyooka, Tsuguyoshi ; Hiyama, Satoshi ; Iikubo, Masahiro ; Osaka, Ken ; Sasaki, Keiichi ; Nagai, Hirokazu ; Sugiura, Tsuyoshi ; Yamauchi, Kensuke ; Kuroda, Kanako ; Yanagisawa, Yuta ; Miyashita, Hitoshi ; Kajita, Tomonari ; Iwama, Ryosuke ; Kurobane, Tsuyoshi ; Takahashi, Tetsu</creatorcontrib><description>Background We aimed to construct an artificial intelligence‐based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single‐lens reflex camera. Subjects and methods We used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OSCC), leukoplakia, and other oral mucosal diseases. An object detection model was constructed using a Single Shot Multibox Detector to detect oral diseases and their locations using images. The model was trained using 523 images of oral cancer, and its performance was evaluated using images of oral cancer (n = 66), leukoplakia (n = 49), and other oral diseases (n = 405). Results For the detection of only OSCC versus OSCC and leukoplakia, the model demonstrated a sensitivity of 93.9% versus 83.7%, a negative predictive value of 98.8% versus 94.5%, and a specificity of 81.2% versus 81.2%. Conclusions Our proposed model is a potential diagnostic tool for oral diseases.</description><identifier>ISSN: 1043-3074</identifier><identifier>ISSN: 1097-0347</identifier><identifier>EISSN: 1097-0347</identifier><identifier>DOI: 10.1002/hed.27843</identifier><identifier>PMID: 38860703</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Artificial intelligence ; deep learning ; Head &amp; neck cancer ; Image processing ; Leukokeratosis ; Oral cancer ; Oral carcinoma ; Oral cavity ; Oral diseases ; Oral squamous cell carcinoma ; Squamous cell carcinoma</subject><ispartof>Head &amp; neck, 2024-09, Vol.46 (9), p.2253-2260</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC.</rights><rights>2024 The Author(s). Head &amp; Neck published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2783-98f5c939d4d36b7b39007608392d47a8eb03dd7e4fc3ee0f9fd0142fa70c659a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhed.27843$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhed.27843$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38860703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouketsu, Atsumu</creatorcontrib><creatorcontrib>Doi, Chiaki</creatorcontrib><creatorcontrib>Tanaka, Hiroaki</creatorcontrib><creatorcontrib>Araki, Takashi</creatorcontrib><creatorcontrib>Nakayama, Rina</creatorcontrib><creatorcontrib>Toyooka, Tsuguyoshi</creatorcontrib><creatorcontrib>Hiyama, Satoshi</creatorcontrib><creatorcontrib>Iikubo, Masahiro</creatorcontrib><creatorcontrib>Osaka, Ken</creatorcontrib><creatorcontrib>Sasaki, Keiichi</creatorcontrib><creatorcontrib>Nagai, Hirokazu</creatorcontrib><creatorcontrib>Sugiura, Tsuyoshi</creatorcontrib><creatorcontrib>Yamauchi, Kensuke</creatorcontrib><creatorcontrib>Kuroda, Kanako</creatorcontrib><creatorcontrib>Yanagisawa, Yuta</creatorcontrib><creatorcontrib>Miyashita, Hitoshi</creatorcontrib><creatorcontrib>Kajita, Tomonari</creatorcontrib><creatorcontrib>Iwama, Ryosuke</creatorcontrib><creatorcontrib>Kurobane, Tsuyoshi</creatorcontrib><creatorcontrib>Takahashi, Tetsu</creatorcontrib><title>Detection of oral cancer and oral potentially malignant disorders using artificial intelligence‐based image analysis</title><title>Head &amp; neck</title><addtitle>Head Neck</addtitle><description>Background We aimed to construct an artificial intelligence‐based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single‐lens reflex camera. Subjects and methods We used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OSCC), leukoplakia, and other oral mucosal diseases. An object detection model was constructed using a Single Shot Multibox Detector to detect oral diseases and their locations using images. The model was trained using 523 images of oral cancer, and its performance was evaluated using images of oral cancer (n = 66), leukoplakia (n = 49), and other oral diseases (n = 405). Results For the detection of only OSCC versus OSCC and leukoplakia, the model demonstrated a sensitivity of 93.9% versus 83.7%, a negative predictive value of 98.8% versus 94.5%, and a specificity of 81.2% versus 81.2%. Conclusions Our proposed model is a potential diagnostic tool for oral diseases.</description><subject>Artificial intelligence</subject><subject>deep learning</subject><subject>Head &amp; neck cancer</subject><subject>Image processing</subject><subject>Leukokeratosis</subject><subject>Oral cancer</subject><subject>Oral carcinoma</subject><subject>Oral cavity</subject><subject>Oral diseases</subject><subject>Oral squamous cell carcinoma</subject><subject>Squamous cell carcinoma</subject><issn>1043-3074</issn><issn>1097-0347</issn><issn>1097-0347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kcFu1DAQhi0EoqVw4AWQJS5wSDvJuLF9RG2hSJW4wDly7PHiKmsvdgLaG4_QZ-yT4CXtBYmTx6NPn2bmZ-x1C6ctQHf2ndxpJ5XAJ-y4BS0bQCGfHmqBDYIUR-xFKbcAgL3onrMjVKoHCXjMfl7STHYOKfLkecpm4tZES5mb6Nb_Ls0U52Cmac-3ZgqbaOLMXSgpO8qFLyXEDTd5Dj7YivEQZ5oqR9Vz__tuNIUcD1uzoSo1076E8pI982Yq9OrhPWHfPl59vbhubr58-nzx4aaxdR9stPLnVqN2wmE_yhE1gOxBoe6ckEbRCOicJOEtEoHX3kErOm8k2P5cGzxh71bvLqcfC5V52IZi63QmUlrKgND3UgO2WNG3_6C3acl13gOltGp7BbJS71fK5lRKJj_scl0t74cWhkMYQw1j-BtGZd88GJdxW7uP5OP1K3C2Ar_CRPv_m4brq8tV-Qd6PZV7</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Kouketsu, Atsumu</creator><creator>Doi, Chiaki</creator><creator>Tanaka, Hiroaki</creator><creator>Araki, Takashi</creator><creator>Nakayama, Rina</creator><creator>Toyooka, Tsuguyoshi</creator><creator>Hiyama, Satoshi</creator><creator>Iikubo, Masahiro</creator><creator>Osaka, Ken</creator><creator>Sasaki, Keiichi</creator><creator>Nagai, Hirokazu</creator><creator>Sugiura, Tsuyoshi</creator><creator>Yamauchi, Kensuke</creator><creator>Kuroda, Kanako</creator><creator>Yanagisawa, Yuta</creator><creator>Miyashita, Hitoshi</creator><creator>Kajita, Tomonari</creator><creator>Iwama, Ryosuke</creator><creator>Kurobane, Tsuyoshi</creator><creator>Takahashi, Tetsu</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>202409</creationdate><title>Detection of oral cancer and oral potentially malignant disorders using artificial intelligence‐based image analysis</title><author>Kouketsu, Atsumu ; Doi, Chiaki ; Tanaka, Hiroaki ; Araki, Takashi ; Nakayama, Rina ; Toyooka, Tsuguyoshi ; Hiyama, Satoshi ; Iikubo, Masahiro ; Osaka, Ken ; Sasaki, Keiichi ; Nagai, Hirokazu ; Sugiura, Tsuyoshi ; Yamauchi, Kensuke ; Kuroda, Kanako ; Yanagisawa, Yuta ; Miyashita, Hitoshi ; Kajita, Tomonari ; Iwama, Ryosuke ; Kurobane, Tsuyoshi ; Takahashi, Tetsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2783-98f5c939d4d36b7b39007608392d47a8eb03dd7e4fc3ee0f9fd0142fa70c659a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>deep learning</topic><topic>Head &amp; neck cancer</topic><topic>Image processing</topic><topic>Leukokeratosis</topic><topic>Oral cancer</topic><topic>Oral carcinoma</topic><topic>Oral cavity</topic><topic>Oral diseases</topic><topic>Oral squamous cell carcinoma</topic><topic>Squamous cell carcinoma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouketsu, Atsumu</creatorcontrib><creatorcontrib>Doi, Chiaki</creatorcontrib><creatorcontrib>Tanaka, Hiroaki</creatorcontrib><creatorcontrib>Araki, Takashi</creatorcontrib><creatorcontrib>Nakayama, Rina</creatorcontrib><creatorcontrib>Toyooka, Tsuguyoshi</creatorcontrib><creatorcontrib>Hiyama, Satoshi</creatorcontrib><creatorcontrib>Iikubo, Masahiro</creatorcontrib><creatorcontrib>Osaka, Ken</creatorcontrib><creatorcontrib>Sasaki, Keiichi</creatorcontrib><creatorcontrib>Nagai, Hirokazu</creatorcontrib><creatorcontrib>Sugiura, Tsuyoshi</creatorcontrib><creatorcontrib>Yamauchi, Kensuke</creatorcontrib><creatorcontrib>Kuroda, Kanako</creatorcontrib><creatorcontrib>Yanagisawa, Yuta</creatorcontrib><creatorcontrib>Miyashita, Hitoshi</creatorcontrib><creatorcontrib>Kajita, Tomonari</creatorcontrib><creatorcontrib>Iwama, Ryosuke</creatorcontrib><creatorcontrib>Kurobane, Tsuyoshi</creatorcontrib><creatorcontrib>Takahashi, Tetsu</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Head &amp; neck</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouketsu, Atsumu</au><au>Doi, Chiaki</au><au>Tanaka, Hiroaki</au><au>Araki, Takashi</au><au>Nakayama, Rina</au><au>Toyooka, Tsuguyoshi</au><au>Hiyama, Satoshi</au><au>Iikubo, Masahiro</au><au>Osaka, Ken</au><au>Sasaki, Keiichi</au><au>Nagai, Hirokazu</au><au>Sugiura, Tsuyoshi</au><au>Yamauchi, Kensuke</au><au>Kuroda, Kanako</au><au>Yanagisawa, Yuta</au><au>Miyashita, Hitoshi</au><au>Kajita, Tomonari</au><au>Iwama, Ryosuke</au><au>Kurobane, Tsuyoshi</au><au>Takahashi, Tetsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of oral cancer and oral potentially malignant disorders using artificial intelligence‐based image analysis</atitle><jtitle>Head &amp; neck</jtitle><addtitle>Head Neck</addtitle><date>2024-09</date><risdate>2024</risdate><volume>46</volume><issue>9</issue><spage>2253</spage><epage>2260</epage><pages>2253-2260</pages><issn>1043-3074</issn><issn>1097-0347</issn><eissn>1097-0347</eissn><abstract>Background We aimed to construct an artificial intelligence‐based model for detecting oral cancer and dysplastic leukoplakia using oral cavity images captured with a single‐lens reflex camera. Subjects and methods We used 1043 images of lesions from 424 patients with oral squamous cell carcinoma (OSCC), leukoplakia, and other oral mucosal diseases. An object detection model was constructed using a Single Shot Multibox Detector to detect oral diseases and their locations using images. The model was trained using 523 images of oral cancer, and its performance was evaluated using images of oral cancer (n = 66), leukoplakia (n = 49), and other oral diseases (n = 405). Results For the detection of only OSCC versus OSCC and leukoplakia, the model demonstrated a sensitivity of 93.9% versus 83.7%, a negative predictive value of 98.8% versus 94.5%, and a specificity of 81.2% versus 81.2%. Conclusions Our proposed model is a potential diagnostic tool for oral diseases.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38860703</pmid><doi>10.1002/hed.27843</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-3074
ispartof Head & neck, 2024-09, Vol.46 (9), p.2253-2260
issn 1043-3074
1097-0347
1097-0347
language eng
recordid cdi_proquest_miscellaneous_3066790313
source Wiley Online Library All Journals
subjects Artificial intelligence
deep learning
Head & neck cancer
Image processing
Leukokeratosis
Oral cancer
Oral carcinoma
Oral cavity
Oral diseases
Oral squamous cell carcinoma
Squamous cell carcinoma
title Detection of oral cancer and oral potentially malignant disorders using artificial intelligence‐based image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20oral%20cancer%20and%20oral%20potentially%20malignant%20disorders%20using%20artificial%20intelligence%E2%80%90based%20image%20analysis&rft.jtitle=Head%20&%20neck&rft.au=Kouketsu,%20Atsumu&rft.date=2024-09&rft.volume=46&rft.issue=9&rft.spage=2253&rft.epage=2260&rft.pages=2253-2260&rft.issn=1043-3074&rft.eissn=1097-0347&rft_id=info:doi/10.1002/hed.27843&rft_dat=%3Cproquest_cross%3E3089816807%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089816807&rft_id=info:pmid/38860703&rfr_iscdi=true