Biophysics of claudin proteins in tight junction architecture: Three decades of progress

Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2024-08, Vol.123 (16), p.2363-2378
Hauptverfasser: Marsch, Patrick, Rajagopal, Nandhini, Nangia, Shikha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2378
container_issue 16
container_start_page 2363
container_title Biophysical journal
container_volume 123
creator Marsch, Patrick
Rajagopal, Nandhini
Nangia, Shikha
description Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
doi_str_mv 10.1016/j.bpj.2024.06.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066789201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634952400393X</els_id><sourcerecordid>3066789201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-f01459a6f9cc0b8e4eea65d1569bcfd639fa1615fce4f7bc3f94b9bd0e46f0363</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EouXjB7CgjCwJ58R2Y5gA8SUhsYDEZjn2uXXUJsVOkPj3GFoYme6G531P9xByQqGgQMV5WzTrtiihZAWIAijskCnlrMwBarFLpgAg8opJPiEHMbYAtORA98mkqmsuec2m5O3a9-vFZ_QmZr3LzFKP1nfZOvQD-i5maR_8fDFk7diZwfddpoNZ-AHNMAa8yF4WATGzaLTFn4aUnAeM8YjsOb2MeLydh-T17vbl5iF_er5_vLl6yk1Z8SF3QBmXWjhpDDQ1MkQtuKVcyMY4KyrpNBWUO4PMzRpTOcka2VhAJhxUojokZ5vedPh9xDiolY8Gl0vdYT9GVYEQs1qWQBNKN6gJfYwBnVoHv9LhU1FQ30JVq5JQ9S1UgVBJaMqcbuvHZoX2L_FrMAGXGwDTkx8eg4rGY2fQ-pAkKdv7f-q_AN7th7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066789201</pqid></control><display><type>article</type><title>Biophysics of claudin proteins in tight junction architecture: Three decades of progress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marsch, Patrick ; Rajagopal, Nandhini ; Nangia, Shikha</creator><creatorcontrib>Marsch, Patrick ; Rajagopal, Nandhini ; Nangia, Shikha</creatorcontrib><description>Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.06.010</identifier><identifier>PMID: 38859584</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Claudins - chemistry ; Claudins - genetics ; Claudins - metabolism ; Humans ; Tight Junctions - metabolism</subject><ispartof>Biophysical journal, 2024-08, Vol.123 (16), p.2363-2378</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-f01459a6f9cc0b8e4eea65d1569bcfd639fa1615fce4f7bc3f94b9bd0e46f0363</cites><orcidid>0000-0003-1170-8461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634952400393X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38859584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marsch, Patrick</creatorcontrib><creatorcontrib>Rajagopal, Nandhini</creatorcontrib><creatorcontrib>Nangia, Shikha</creatorcontrib><title>Biophysics of claudin proteins in tight junction architecture: Three decades of progress</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.</description><subject>Animals</subject><subject>Claudins - chemistry</subject><subject>Claudins - genetics</subject><subject>Claudins - metabolism</subject><subject>Humans</subject><subject>Tight Junctions - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EouXjB7CgjCwJ58R2Y5gA8SUhsYDEZjn2uXXUJsVOkPj3GFoYme6G531P9xByQqGgQMV5WzTrtiihZAWIAijskCnlrMwBarFLpgAg8opJPiEHMbYAtORA98mkqmsuec2m5O3a9-vFZ_QmZr3LzFKP1nfZOvQD-i5maR_8fDFk7diZwfddpoNZ-AHNMAa8yF4WATGzaLTFn4aUnAeM8YjsOb2MeLydh-T17vbl5iF_er5_vLl6yk1Z8SF3QBmXWjhpDDQ1MkQtuKVcyMY4KyrpNBWUO4PMzRpTOcka2VhAJhxUojokZ5vedPh9xDiolY8Gl0vdYT9GVYEQs1qWQBNKN6gJfYwBnVoHv9LhU1FQ30JVq5JQ9S1UgVBJaMqcbuvHZoX2L_FrMAGXGwDTkx8eg4rGY2fQ-pAkKdv7f-q_AN7th7o</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Marsch, Patrick</creator><creator>Rajagopal, Nandhini</creator><creator>Nangia, Shikha</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1170-8461</orcidid></search><sort><creationdate>20240820</creationdate><title>Biophysics of claudin proteins in tight junction architecture: Three decades of progress</title><author>Marsch, Patrick ; Rajagopal, Nandhini ; Nangia, Shikha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-f01459a6f9cc0b8e4eea65d1569bcfd639fa1615fce4f7bc3f94b9bd0e46f0363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Claudins - chemistry</topic><topic>Claudins - genetics</topic><topic>Claudins - metabolism</topic><topic>Humans</topic><topic>Tight Junctions - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marsch, Patrick</creatorcontrib><creatorcontrib>Rajagopal, Nandhini</creatorcontrib><creatorcontrib>Nangia, Shikha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marsch, Patrick</au><au>Rajagopal, Nandhini</au><au>Nangia, Shikha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysics of claudin proteins in tight junction architecture: Three decades of progress</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-08-20</date><risdate>2024</risdate><volume>123</volume><issue>16</issue><spage>2363</spage><epage>2378</epage><pages>2363-2378</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38859584</pmid><doi>10.1016/j.bpj.2024.06.010</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1170-8461</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2024-08, Vol.123 (16), p.2363-2378
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_proquest_miscellaneous_3066789201
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Claudins - chemistry
Claudins - genetics
Claudins - metabolism
Humans
Tight Junctions - metabolism
title Biophysics of claudin proteins in tight junction architecture: Three decades of progress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysics%20of%20claudin%20proteins%20in%20tight%20junction%20architecture:%20Three%20decades%20of%20progress&rft.jtitle=Biophysical%20journal&rft.au=Marsch,%20Patrick&rft.date=2024-08-20&rft.volume=123&rft.issue=16&rft.spage=2363&rft.epage=2378&rft.pages=2363-2378&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.06.010&rft_dat=%3Cproquest_cross%3E3066789201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066789201&rft_id=info:pmid/38859584&rft_els_id=S000634952400393X&rfr_iscdi=true