Biophysics of claudin proteins in tight junction architecture: Three decades of progress
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2024-08, Vol.123 (16), p.2363-2378 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2378 |
---|---|
container_issue | 16 |
container_start_page | 2363 |
container_title | Biophysical journal |
container_volume | 123 |
creator | Marsch, Patrick Rajagopal, Nandhini Nangia, Shikha |
description | Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives. |
doi_str_mv | 10.1016/j.bpj.2024.06.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066789201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634952400393X</els_id><sourcerecordid>3066789201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-f01459a6f9cc0b8e4eea65d1569bcfd639fa1615fce4f7bc3f94b9bd0e46f0363</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EouXjB7CgjCwJ58R2Y5gA8SUhsYDEZjn2uXXUJsVOkPj3GFoYme6G531P9xByQqGgQMV5WzTrtiihZAWIAijskCnlrMwBarFLpgAg8opJPiEHMbYAtORA98mkqmsuec2m5O3a9-vFZ_QmZr3LzFKP1nfZOvQD-i5maR_8fDFk7diZwfddpoNZ-AHNMAa8yF4WATGzaLTFn4aUnAeM8YjsOb2MeLydh-T17vbl5iF_er5_vLl6yk1Z8SF3QBmXWjhpDDQ1MkQtuKVcyMY4KyrpNBWUO4PMzRpTOcka2VhAJhxUojokZ5vedPh9xDiolY8Gl0vdYT9GVYEQs1qWQBNKN6gJfYwBnVoHv9LhU1FQ30JVq5JQ9S1UgVBJaMqcbuvHZoX2L_FrMAGXGwDTkx8eg4rGY2fQ-pAkKdv7f-q_AN7th7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066789201</pqid></control><display><type>article</type><title>Biophysics of claudin proteins in tight junction architecture: Three decades of progress</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Marsch, Patrick ; Rajagopal, Nandhini ; Nangia, Shikha</creator><creatorcontrib>Marsch, Patrick ; Rajagopal, Nandhini ; Nangia, Shikha</creatorcontrib><description>Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.06.010</identifier><identifier>PMID: 38859584</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Claudins - chemistry ; Claudins - genetics ; Claudins - metabolism ; Humans ; Tight Junctions - metabolism</subject><ispartof>Biophysical journal, 2024-08, Vol.123 (16), p.2363-2378</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-f01459a6f9cc0b8e4eea65d1569bcfd639fa1615fce4f7bc3f94b9bd0e46f0363</cites><orcidid>0000-0003-1170-8461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634952400393X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38859584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marsch, Patrick</creatorcontrib><creatorcontrib>Rajagopal, Nandhini</creatorcontrib><creatorcontrib>Nangia, Shikha</creatorcontrib><title>Biophysics of claudin proteins in tight junction architecture: Three decades of progress</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.</description><subject>Animals</subject><subject>Claudins - chemistry</subject><subject>Claudins - genetics</subject><subject>Claudins - metabolism</subject><subject>Humans</subject><subject>Tight Junctions - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EouXjB7CgjCwJ58R2Y5gA8SUhsYDEZjn2uXXUJsVOkPj3GFoYme6G531P9xByQqGgQMV5WzTrtiihZAWIAijskCnlrMwBarFLpgAg8opJPiEHMbYAtORA98mkqmsuec2m5O3a9-vFZ_QmZr3LzFKP1nfZOvQD-i5maR_8fDFk7diZwfddpoNZ-AHNMAa8yF4WATGzaLTFn4aUnAeM8YjsOb2MeLydh-T17vbl5iF_er5_vLl6yk1Z8SF3QBmXWjhpDDQ1MkQtuKVcyMY4KyrpNBWUO4PMzRpTOcka2VhAJhxUojokZ5vedPh9xDiolY8Gl0vdYT9GVYEQs1qWQBNKN6gJfYwBnVoHv9LhU1FQ30JVq5JQ9S1UgVBJaMqcbuvHZoX2L_FrMAGXGwDTkx8eg4rGY2fQ-pAkKdv7f-q_AN7th7o</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Marsch, Patrick</creator><creator>Rajagopal, Nandhini</creator><creator>Nangia, Shikha</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1170-8461</orcidid></search><sort><creationdate>20240820</creationdate><title>Biophysics of claudin proteins in tight junction architecture: Three decades of progress</title><author>Marsch, Patrick ; Rajagopal, Nandhini ; Nangia, Shikha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-f01459a6f9cc0b8e4eea65d1569bcfd639fa1615fce4f7bc3f94b9bd0e46f0363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Claudins - chemistry</topic><topic>Claudins - genetics</topic><topic>Claudins - metabolism</topic><topic>Humans</topic><topic>Tight Junctions - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marsch, Patrick</creatorcontrib><creatorcontrib>Rajagopal, Nandhini</creatorcontrib><creatorcontrib>Nangia, Shikha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marsch, Patrick</au><au>Rajagopal, Nandhini</au><au>Nangia, Shikha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysics of claudin proteins in tight junction architecture: Three decades of progress</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-08-20</date><risdate>2024</risdate><volume>123</volume><issue>16</issue><spage>2363</spage><epage>2378</epage><pages>2363-2378</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38859584</pmid><doi>10.1016/j.bpj.2024.06.010</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1170-8461</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2024-08, Vol.123 (16), p.2363-2378 |
issn | 0006-3495 1542-0086 1542-0086 |
language | eng |
recordid | cdi_proquest_miscellaneous_3066789201 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Claudins - chemistry Claudins - genetics Claudins - metabolism Humans Tight Junctions - metabolism |
title | Biophysics of claudin proteins in tight junction architecture: Three decades of progress |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysics%20of%20claudin%20proteins%20in%20tight%20junction%20architecture:%20Three%20decades%20of%20progress&rft.jtitle=Biophysical%20journal&rft.au=Marsch,%20Patrick&rft.date=2024-08-20&rft.volume=123&rft.issue=16&rft.spage=2363&rft.epage=2378&rft.pages=2363-2378&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.06.010&rft_dat=%3Cproquest_cross%3E3066789201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066789201&rft_id=info:pmid/38859584&rft_els_id=S000634952400393X&rfr_iscdi=true |