The origin of the large T c variation in FeSe thin films probed by dual-beam pulsed laser deposition

FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum frontiers 2024, Vol.3 (1), p.12-12
Hauptverfasser: Feng, Zhongpei, Zhang, Hua, Yuan, Jie, Jiang, Xingyu, Wu, Xianxin, Zhao, Zhanyi, Xu, Qiuhao, Stanev, Valentin, Zhang, Qinghua, Yang, Huaixin, Gu, Lin, Meng, Sheng, Weng, Suming, Chen, Qihong, Takeuchi, Ichiro, Jin, Kui, Zhao, Zhongxian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 12
container_title Quantum frontiers
container_volume 3
creator Feng, Zhongpei
Zhang, Hua
Yuan, Jie
Jiang, Xingyu
Wu, Xianxin
Zhao, Zhanyi
Xu, Qiuhao
Stanev, Valentin
Zhang, Qinghua
Yang, Huaixin
Gu, Lin
Meng, Sheng
Weng, Suming
Chen, Qihong
Takeuchi, Ichiro
Jin, Kui
Zhao, Zhongxian
description FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and has been observed here, namely, , where is the -axis lattice constant (and is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe. The online version contains supplementary material available at 10.1007/s44214-024-00058-0.
doi_str_mv 10.1007/s44214-024-00058-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066340216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3066340216</sourcerecordid><originalsourceid>FETCH-LOGICAL-p563-a2a0227c7b23f71c10f2be71bcf067f579a5521a4478ad4541c31fa3caec6dbd3</originalsourceid><addsrcrecordid>eNo1kEtLw0AQxxdBbKn9Ah5kj15W973pUYpVoeDB3MPsq64kTcwmQr-9K9bDMI_f_IeZQeiG0XtGqXnIUnImCeXFKFUVoRdoyY1gRDOqF2id82cBvDJ8Q_UVWoiqUoppsUS-_gi4H9MhHXEf8VSyFsZDwDV2-BvGBFPqj7jQXXgPhZcoprbLeBh7Gzy2J-xnaIkN0OFhbnOptZDDiH0Y-px-5dfoMkIh67NfoXr3VG9fyP7t-XX7uCeD0oIAB8q5ccZyEQ1zjEZug2HWRapNVGYDSnEGUpoKvFSSOcEiCAfBaW-9WKG7v7Flta855KnpUnahbeEY-jk3gmotJOXl8BW6PbfOtgu-GcbUwXhq_h8jfgAWxGQR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066340216</pqid></control><display><type>article</type><title>The origin of the large T c variation in FeSe thin films probed by dual-beam pulsed laser deposition</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><creator>Feng, Zhongpei ; Zhang, Hua ; Yuan, Jie ; Jiang, Xingyu ; Wu, Xianxin ; Zhao, Zhanyi ; Xu, Qiuhao ; Stanev, Valentin ; Zhang, Qinghua ; Yang, Huaixin ; Gu, Lin ; Meng, Sheng ; Weng, Suming ; Chen, Qihong ; Takeuchi, Ichiro ; Jin, Kui ; Zhao, Zhongxian</creator><creatorcontrib>Feng, Zhongpei ; Zhang, Hua ; Yuan, Jie ; Jiang, Xingyu ; Wu, Xianxin ; Zhao, Zhanyi ; Xu, Qiuhao ; Stanev, Valentin ; Zhang, Qinghua ; Yang, Huaixin ; Gu, Lin ; Meng, Sheng ; Weng, Suming ; Chen, Qihong ; Takeuchi, Ichiro ; Jin, Kui ; Zhao, Zhongxian</creatorcontrib><description>FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and has been observed here, namely, , where is the -axis lattice constant (and is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe. The online version contains supplementary material available at 10.1007/s44214-024-00058-0.</description><identifier>EISSN: 2731-6106</identifier><identifier>DOI: 10.1007/s44214-024-00058-0</identifier><identifier>PMID: 38855163</identifier><language>eng</language><publisher>Switzerland</publisher><ispartof>Quantum frontiers, 2024, Vol.3 (1), p.12-12</ispartof><rights>The Author(s) 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6039-0456</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38855163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Zhongpei</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Yuan, Jie</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Wu, Xianxin</creatorcontrib><creatorcontrib>Zhao, Zhanyi</creatorcontrib><creatorcontrib>Xu, Qiuhao</creatorcontrib><creatorcontrib>Stanev, Valentin</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Yang, Huaixin</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Weng, Suming</creatorcontrib><creatorcontrib>Chen, Qihong</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Jin, Kui</creatorcontrib><creatorcontrib>Zhao, Zhongxian</creatorcontrib><title>The origin of the large T c variation in FeSe thin films probed by dual-beam pulsed laser deposition</title><title>Quantum frontiers</title><addtitle>Quantum Front</addtitle><description>FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and has been observed here, namely, , where is the -axis lattice constant (and is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe. The online version contains supplementary material available at 10.1007/s44214-024-00058-0.</description><issn>2731-6106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLw0AQxxdBbKn9Ah5kj15W973pUYpVoeDB3MPsq64kTcwmQr-9K9bDMI_f_IeZQeiG0XtGqXnIUnImCeXFKFUVoRdoyY1gRDOqF2id82cBvDJ8Q_UVWoiqUoppsUS-_gi4H9MhHXEf8VSyFsZDwDV2-BvGBFPqj7jQXXgPhZcoprbLeBh7Gzy2J-xnaIkN0OFhbnOptZDDiH0Y-px-5dfoMkIh67NfoXr3VG9fyP7t-XX7uCeD0oIAB8q5ccZyEQ1zjEZug2HWRapNVGYDSnEGUpoKvFSSOcEiCAfBaW-9WKG7v7Flta855KnpUnahbeEY-jk3gmotJOXl8BW6PbfOtgu-GcbUwXhq_h8jfgAWxGQR</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Feng, Zhongpei</creator><creator>Zhang, Hua</creator><creator>Yuan, Jie</creator><creator>Jiang, Xingyu</creator><creator>Wu, Xianxin</creator><creator>Zhao, Zhanyi</creator><creator>Xu, Qiuhao</creator><creator>Stanev, Valentin</creator><creator>Zhang, Qinghua</creator><creator>Yang, Huaixin</creator><creator>Gu, Lin</creator><creator>Meng, Sheng</creator><creator>Weng, Suming</creator><creator>Chen, Qihong</creator><creator>Takeuchi, Ichiro</creator><creator>Jin, Kui</creator><creator>Zhao, Zhongxian</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6039-0456</orcidid></search><sort><creationdate>2024</creationdate><title>The origin of the large T c variation in FeSe thin films probed by dual-beam pulsed laser deposition</title><author>Feng, Zhongpei ; Zhang, Hua ; Yuan, Jie ; Jiang, Xingyu ; Wu, Xianxin ; Zhao, Zhanyi ; Xu, Qiuhao ; Stanev, Valentin ; Zhang, Qinghua ; Yang, Huaixin ; Gu, Lin ; Meng, Sheng ; Weng, Suming ; Chen, Qihong ; Takeuchi, Ichiro ; Jin, Kui ; Zhao, Zhongxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p563-a2a0227c7b23f71c10f2be71bcf067f579a5521a4478ad4541c31fa3caec6dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Zhongpei</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Yuan, Jie</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Wu, Xianxin</creatorcontrib><creatorcontrib>Zhao, Zhanyi</creatorcontrib><creatorcontrib>Xu, Qiuhao</creatorcontrib><creatorcontrib>Stanev, Valentin</creatorcontrib><creatorcontrib>Zhang, Qinghua</creatorcontrib><creatorcontrib>Yang, Huaixin</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Meng, Sheng</creatorcontrib><creatorcontrib>Weng, Suming</creatorcontrib><creatorcontrib>Chen, Qihong</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>Jin, Kui</creatorcontrib><creatorcontrib>Zhao, Zhongxian</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Quantum frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Zhongpei</au><au>Zhang, Hua</au><au>Yuan, Jie</au><au>Jiang, Xingyu</au><au>Wu, Xianxin</au><au>Zhao, Zhanyi</au><au>Xu, Qiuhao</au><au>Stanev, Valentin</au><au>Zhang, Qinghua</au><au>Yang, Huaixin</au><au>Gu, Lin</au><au>Meng, Sheng</au><au>Weng, Suming</au><au>Chen, Qihong</au><au>Takeuchi, Ichiro</au><au>Jin, Kui</au><au>Zhao, Zhongxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The origin of the large T c variation in FeSe thin films probed by dual-beam pulsed laser deposition</atitle><jtitle>Quantum frontiers</jtitle><addtitle>Quantum Front</addtitle><date>2024</date><risdate>2024</risdate><volume>3</volume><issue>1</issue><spage>12</spage><epage>12</epage><pages>12-12</pages><eissn>2731-6106</eissn><abstract>FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and has been observed here, namely, , where is the -axis lattice constant (and is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe. The online version contains supplementary material available at 10.1007/s44214-024-00058-0.</abstract><cop>Switzerland</cop><pmid>38855163</pmid><doi>10.1007/s44214-024-00058-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6039-0456</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2731-6106
ispartof Quantum frontiers, 2024, Vol.3 (1), p.12-12
issn 2731-6106
language eng
recordid cdi_proquest_miscellaneous_3066340216
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals
title The origin of the large T c variation in FeSe thin films probed by dual-beam pulsed laser deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20origin%20of%20the%20large%20T%20c%20variation%20in%20FeSe%20thin%20films%20probed%20by%20dual-beam%20pulsed%20laser%20deposition&rft.jtitle=Quantum%20frontiers&rft.au=Feng,%20Zhongpei&rft.date=2024&rft.volume=3&rft.issue=1&rft.spage=12&rft.epage=12&rft.pages=12-12&rft.eissn=2731-6106&rft_id=info:doi/10.1007/s44214-024-00058-0&rft_dat=%3Cproquest_pubme%3E3066340216%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066340216&rft_id=info:pmid/38855163&rfr_iscdi=true