The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)

Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digestive and liver disease 2025-01, Vol.57 (1), p.184-189
Hauptverfasser: Furlanello, Cesare, Bussola, Nicole, Merzi, Nicolò, Pievani Trapletti, Giovanni, Cadei, Moris, Del Sordo, Rachele, Sidoni, Angelo, Ricci, Chiara, Lanzarotto, Francesco, Parigi, Tommaso Lorenzo, Villanacci, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 1
container_start_page 184
container_title Digestive and liver disease
container_volume 57
creator Furlanello, Cesare
Bussola, Nicole
Merzi, Nicolò
Pievani Trapletti, Giovanni
Cadei, Moris
Del Sordo, Rachele
Sidoni, Angelo
Ricci, Chiara
Lanzarotto, Francesco
Parigi, Tommaso Lorenzo
Villanacci, Vincenzo
description Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variability. The IBD-Artificial Intelligence (AI) project aims at the development of an AI-based evaluation system to support the diagnosis of IBD, semi-automatically quantifying basal plasmacytosis. A deep learning model was trained to detect and quantify plasma cells on a public dataset of 4981 annotated images. The model was then tested on an external validation cohort of 356 intestinal biopsies of CD, UC and healthy controls. AI diagnostic performance was calculated compared to human gold standard. The system correctly found that CD and UC samples had a greater prevalence of basal plasma cells with mean number of PCs within ROIs of 38.22 (95 % CI: 31.73, 49.04) for CD, 55.16 (46.57, 65.93) for UC, and 17.25 (CI: 12.17, 27.05) for controls. Overall, OR=4.968 (CI: 1.835, 14.638) was found for IBD compared to normal mucosa (CD: +59 %; UC: +129 %). Additionally, as expected, UC samples were found to have more plasma cells in colon than CD cases. Our model accurately replicated human assessment of basal plasmacytosis, underscoring the value of AI models as a potential aid IBD diagnosis.
doi_str_mv 10.1016/j.dld.2024.05.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066337721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1590865824007916</els_id><sourcerecordid>3066337721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2291-1b147f54a9df334740b5f61129758ca36f0acd2217ad91e36d5e8dff9752c7133</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0E4lH4ADYoS1gk-BE7iVgB5VEJiQ2sLdceF1dOXOwUxN_jqsCS1Xjkc680B6FTgiuCibhcVsabimJaV5hXmLEddEjapi0ZF3Q3v3mHy1bw9gAdpbTEmBLB8T46YG3LGe7YIQovb1AY-AAfVj0MYxFsoeLorNNO-cINI3jvFjBoyEsxZvrNpTH4sHA6A8apxRCSS5vgbLBe9b0aQ_wqbsIn-GLqEqgExfnsZlpezy6O0Z5VPsHJz5yg1_u7l9vH8un5YXZ7_VRqSjtSkjmpG8tr1RnLWN3UeM6tIIR2DW-1YsJipQ2lpFGmI8CE4dAaa_M31Q1hbILOt72rGN7XkEbZu6TzLWqAsE6SYSEYaxpKMkq2qI4hpQhWrqLrVfySBMuNZ7mU2bPceJaYy-w5Z85-6tfzHsxf4ldsBq62AOQjPxxEmbTbWDQugh6lCe6f-m97XI1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066337721</pqid></control><display><type>article</type><title>The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Furlanello, Cesare ; Bussola, Nicole ; Merzi, Nicolò ; Pievani Trapletti, Giovanni ; Cadei, Moris ; Del Sordo, Rachele ; Sidoni, Angelo ; Ricci, Chiara ; Lanzarotto, Francesco ; Parigi, Tommaso Lorenzo ; Villanacci, Vincenzo</creator><creatorcontrib>Furlanello, Cesare ; Bussola, Nicole ; Merzi, Nicolò ; Pievani Trapletti, Giovanni ; Cadei, Moris ; Del Sordo, Rachele ; Sidoni, Angelo ; Ricci, Chiara ; Lanzarotto, Francesco ; Parigi, Tommaso Lorenzo ; Villanacci, Vincenzo</creatorcontrib><description>Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variability. The IBD-Artificial Intelligence (AI) project aims at the development of an AI-based evaluation system to support the diagnosis of IBD, semi-automatically quantifying basal plasmacytosis. A deep learning model was trained to detect and quantify plasma cells on a public dataset of 4981 annotated images. The model was then tested on an external validation cohort of 356 intestinal biopsies of CD, UC and healthy controls. AI diagnostic performance was calculated compared to human gold standard. The system correctly found that CD and UC samples had a greater prevalence of basal plasma cells with mean number of PCs within ROIs of 38.22 (95 % CI: 31.73, 49.04) for CD, 55.16 (46.57, 65.93) for UC, and 17.25 (CI: 12.17, 27.05) for controls. Overall, OR=4.968 (CI: 1.835, 14.638) was found for IBD compared to normal mucosa (CD: +59 %; UC: +129 %). Additionally, as expected, UC samples were found to have more plasma cells in colon than CD cases. Our model accurately replicated human assessment of basal plasmacytosis, underscoring the value of AI models as a potential aid IBD diagnosis.</description><identifier>ISSN: 1590-8658</identifier><identifier>ISSN: 1878-3562</identifier><identifier>EISSN: 1878-3562</identifier><identifier>DOI: 10.1016/j.dld.2024.05.033</identifier><identifier>PMID: 38853093</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Artificial intelligence ; Basal plasmacytosis ; Deep learning ; Inflammatory bowel disease</subject><ispartof>Digestive and liver disease, 2025-01, Vol.57 (1), p.184-189</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2291-1b147f54a9df334740b5f61129758ca36f0acd2217ad91e36d5e8dff9752c7133</cites><orcidid>0009-0002-0718-3893 ; 0000-0002-3398-0231 ; 0009-0003-6532-3791 ; 0000-0002-5384-3605 ; 0000-0003-3930-2957 ; 0000-0002-0748-6600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1590865824007916$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38853093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furlanello, Cesare</creatorcontrib><creatorcontrib>Bussola, Nicole</creatorcontrib><creatorcontrib>Merzi, Nicolò</creatorcontrib><creatorcontrib>Pievani Trapletti, Giovanni</creatorcontrib><creatorcontrib>Cadei, Moris</creatorcontrib><creatorcontrib>Del Sordo, Rachele</creatorcontrib><creatorcontrib>Sidoni, Angelo</creatorcontrib><creatorcontrib>Ricci, Chiara</creatorcontrib><creatorcontrib>Lanzarotto, Francesco</creatorcontrib><creatorcontrib>Parigi, Tommaso Lorenzo</creatorcontrib><creatorcontrib>Villanacci, Vincenzo</creatorcontrib><title>The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)</title><title>Digestive and liver disease</title><addtitle>Dig Liver Dis</addtitle><description>Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variability. The IBD-Artificial Intelligence (AI) project aims at the development of an AI-based evaluation system to support the diagnosis of IBD, semi-automatically quantifying basal plasmacytosis. A deep learning model was trained to detect and quantify plasma cells on a public dataset of 4981 annotated images. The model was then tested on an external validation cohort of 356 intestinal biopsies of CD, UC and healthy controls. AI diagnostic performance was calculated compared to human gold standard. The system correctly found that CD and UC samples had a greater prevalence of basal plasma cells with mean number of PCs within ROIs of 38.22 (95 % CI: 31.73, 49.04) for CD, 55.16 (46.57, 65.93) for UC, and 17.25 (CI: 12.17, 27.05) for controls. Overall, OR=4.968 (CI: 1.835, 14.638) was found for IBD compared to normal mucosa (CD: +59 %; UC: +129 %). Additionally, as expected, UC samples were found to have more plasma cells in colon than CD cases. Our model accurately replicated human assessment of basal plasmacytosis, underscoring the value of AI models as a potential aid IBD diagnosis.</description><subject>Artificial intelligence</subject><subject>Basal plasmacytosis</subject><subject>Deep learning</subject><subject>Inflammatory bowel disease</subject><issn>1590-8658</issn><issn>1878-3562</issn><issn>1878-3562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0E4lH4ADYoS1gk-BE7iVgB5VEJiQ2sLdceF1dOXOwUxN_jqsCS1Xjkc680B6FTgiuCibhcVsabimJaV5hXmLEddEjapi0ZF3Q3v3mHy1bw9gAdpbTEmBLB8T46YG3LGe7YIQovb1AY-AAfVj0MYxFsoeLorNNO-cINI3jvFjBoyEsxZvrNpTH4sHA6A8apxRCSS5vgbLBe9b0aQ_wqbsIn-GLqEqgExfnsZlpezy6O0Z5VPsHJz5yg1_u7l9vH8un5YXZ7_VRqSjtSkjmpG8tr1RnLWN3UeM6tIIR2DW-1YsJipQ2lpFGmI8CE4dAaa_M31Q1hbILOt72rGN7XkEbZu6TzLWqAsE6SYSEYaxpKMkq2qI4hpQhWrqLrVfySBMuNZ7mU2bPceJaYy-w5Z85-6tfzHsxf4ldsBq62AOQjPxxEmbTbWDQugh6lCe6f-m97XI1Y</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Furlanello, Cesare</creator><creator>Bussola, Nicole</creator><creator>Merzi, Nicolò</creator><creator>Pievani Trapletti, Giovanni</creator><creator>Cadei, Moris</creator><creator>Del Sordo, Rachele</creator><creator>Sidoni, Angelo</creator><creator>Ricci, Chiara</creator><creator>Lanzarotto, Francesco</creator><creator>Parigi, Tommaso Lorenzo</creator><creator>Villanacci, Vincenzo</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-0718-3893</orcidid><orcidid>https://orcid.org/0000-0002-3398-0231</orcidid><orcidid>https://orcid.org/0009-0003-6532-3791</orcidid><orcidid>https://orcid.org/0000-0002-5384-3605</orcidid><orcidid>https://orcid.org/0000-0003-3930-2957</orcidid><orcidid>https://orcid.org/0000-0002-0748-6600</orcidid></search><sort><creationdate>202501</creationdate><title>The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)</title><author>Furlanello, Cesare ; Bussola, Nicole ; Merzi, Nicolò ; Pievani Trapletti, Giovanni ; Cadei, Moris ; Del Sordo, Rachele ; Sidoni, Angelo ; Ricci, Chiara ; Lanzarotto, Francesco ; Parigi, Tommaso Lorenzo ; Villanacci, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2291-1b147f54a9df334740b5f61129758ca36f0acd2217ad91e36d5e8dff9752c7133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial intelligence</topic><topic>Basal plasmacytosis</topic><topic>Deep learning</topic><topic>Inflammatory bowel disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furlanello, Cesare</creatorcontrib><creatorcontrib>Bussola, Nicole</creatorcontrib><creatorcontrib>Merzi, Nicolò</creatorcontrib><creatorcontrib>Pievani Trapletti, Giovanni</creatorcontrib><creatorcontrib>Cadei, Moris</creatorcontrib><creatorcontrib>Del Sordo, Rachele</creatorcontrib><creatorcontrib>Sidoni, Angelo</creatorcontrib><creatorcontrib>Ricci, Chiara</creatorcontrib><creatorcontrib>Lanzarotto, Francesco</creatorcontrib><creatorcontrib>Parigi, Tommaso Lorenzo</creatorcontrib><creatorcontrib>Villanacci, Vincenzo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Digestive and liver disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furlanello, Cesare</au><au>Bussola, Nicole</au><au>Merzi, Nicolò</au><au>Pievani Trapletti, Giovanni</au><au>Cadei, Moris</au><au>Del Sordo, Rachele</au><au>Sidoni, Angelo</au><au>Ricci, Chiara</au><au>Lanzarotto, Francesco</au><au>Parigi, Tommaso Lorenzo</au><au>Villanacci, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)</atitle><jtitle>Digestive and liver disease</jtitle><addtitle>Dig Liver Dis</addtitle><date>2025-01</date><risdate>2025</risdate><volume>57</volume><issue>1</issue><spage>184</spage><epage>189</epage><pages>184-189</pages><issn>1590-8658</issn><issn>1878-3562</issn><eissn>1878-3562</eissn><abstract>Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variability. The IBD-Artificial Intelligence (AI) project aims at the development of an AI-based evaluation system to support the diagnosis of IBD, semi-automatically quantifying basal plasmacytosis. A deep learning model was trained to detect and quantify plasma cells on a public dataset of 4981 annotated images. The model was then tested on an external validation cohort of 356 intestinal biopsies of CD, UC and healthy controls. AI diagnostic performance was calculated compared to human gold standard. The system correctly found that CD and UC samples had a greater prevalence of basal plasma cells with mean number of PCs within ROIs of 38.22 (95 % CI: 31.73, 49.04) for CD, 55.16 (46.57, 65.93) for UC, and 17.25 (CI: 12.17, 27.05) for controls. Overall, OR=4.968 (CI: 1.835, 14.638) was found for IBD compared to normal mucosa (CD: +59 %; UC: +129 %). Additionally, as expected, UC samples were found to have more plasma cells in colon than CD cases. Our model accurately replicated human assessment of basal plasmacytosis, underscoring the value of AI models as a potential aid IBD diagnosis.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>38853093</pmid><doi>10.1016/j.dld.2024.05.033</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0002-0718-3893</orcidid><orcidid>https://orcid.org/0000-0002-3398-0231</orcidid><orcidid>https://orcid.org/0009-0003-6532-3791</orcidid><orcidid>https://orcid.org/0000-0002-5384-3605</orcidid><orcidid>https://orcid.org/0000-0003-3930-2957</orcidid><orcidid>https://orcid.org/0000-0002-0748-6600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1590-8658
ispartof Digestive and liver disease, 2025-01, Vol.57 (1), p.184-189
issn 1590-8658
1878-3562
1878-3562
language eng
recordid cdi_proquest_miscellaneous_3066337721
source ScienceDirect Journals (5 years ago - present)
subjects Artificial intelligence
Basal plasmacytosis
Deep learning
Inflammatory bowel disease
title The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20development%20of%20artificial%20intelligence%20in%20the%20histological%20diagnosis%20of%20Inflammatory%20Bowel%20Disease%20(IBD-AI)&rft.jtitle=Digestive%20and%20liver%20disease&rft.au=Furlanello,%20Cesare&rft.date=2025-01&rft.volume=57&rft.issue=1&rft.spage=184&rft.epage=189&rft.pages=184-189&rft.issn=1590-8658&rft.eissn=1878-3562&rft_id=info:doi/10.1016/j.dld.2024.05.033&rft_dat=%3Cproquest_cross%3E3066337721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066337721&rft_id=info:pmid/38853093&rft_els_id=S1590865824007916&rfr_iscdi=true