The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)
Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variabili...
Gespeichert in:
Veröffentlicht in: | Digestive and liver disease 2025-01, Vol.57 (1), p.184-189 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 1 |
container_start_page | 184 |
container_title | Digestive and liver disease |
container_volume | 57 |
creator | Furlanello, Cesare Bussola, Nicole Merzi, Nicolò Pievani Trapletti, Giovanni Cadei, Moris Del Sordo, Rachele Sidoni, Angelo Ricci, Chiara Lanzarotto, Francesco Parigi, Tommaso Lorenzo Villanacci, Vincenzo |
description | Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variability.
The IBD-Artificial Intelligence (AI) project aims at the development of an AI-based evaluation system to support the diagnosis of IBD, semi-automatically quantifying basal plasmacytosis.
A deep learning model was trained to detect and quantify plasma cells on a public dataset of 4981 annotated images. The model was then tested on an external validation cohort of 356 intestinal biopsies of CD, UC and healthy controls. AI diagnostic performance was calculated compared to human gold standard.
The system correctly found that CD and UC samples had a greater prevalence of basal plasma cells with mean number of PCs within ROIs of 38.22 (95 % CI: 31.73, 49.04) for CD, 55.16 (46.57, 65.93) for UC, and 17.25 (CI: 12.17, 27.05) for controls. Overall, OR=4.968 (CI: 1.835, 14.638) was found for IBD compared to normal mucosa (CD: +59 %; UC: +129 %). Additionally, as expected, UC samples were found to have more plasma cells in colon than CD cases.
Our model accurately replicated human assessment of basal plasmacytosis, underscoring the value of AI models as a potential aid IBD diagnosis. |
doi_str_mv | 10.1016/j.dld.2024.05.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3066337721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1590865824007916</els_id><sourcerecordid>3066337721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2291-1b147f54a9df334740b5f61129758ca36f0acd2217ad91e36d5e8dff9752c7133</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0E4lH4ADYoS1gk-BE7iVgB5VEJiQ2sLdceF1dOXOwUxN_jqsCS1Xjkc680B6FTgiuCibhcVsabimJaV5hXmLEddEjapi0ZF3Q3v3mHy1bw9gAdpbTEmBLB8T46YG3LGe7YIQovb1AY-AAfVj0MYxFsoeLorNNO-cINI3jvFjBoyEsxZvrNpTH4sHA6A8apxRCSS5vgbLBe9b0aQ_wqbsIn-GLqEqgExfnsZlpezy6O0Z5VPsHJz5yg1_u7l9vH8un5YXZ7_VRqSjtSkjmpG8tr1RnLWN3UeM6tIIR2DW-1YsJipQ2lpFGmI8CE4dAaa_M31Q1hbILOt72rGN7XkEbZu6TzLWqAsE6SYSEYaxpKMkq2qI4hpQhWrqLrVfySBMuNZ7mU2bPceJaYy-w5Z85-6tfzHsxf4ldsBq62AOQjPxxEmbTbWDQugh6lCe6f-m97XI1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3066337721</pqid></control><display><type>article</type><title>The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Furlanello, Cesare ; Bussola, Nicole ; Merzi, Nicolò ; Pievani Trapletti, Giovanni ; Cadei, Moris ; Del Sordo, Rachele ; Sidoni, Angelo ; Ricci, Chiara ; Lanzarotto, Francesco ; Parigi, Tommaso Lorenzo ; Villanacci, Vincenzo</creator><creatorcontrib>Furlanello, Cesare ; Bussola, Nicole ; Merzi, Nicolò ; Pievani Trapletti, Giovanni ; Cadei, Moris ; Del Sordo, Rachele ; Sidoni, Angelo ; Ricci, Chiara ; Lanzarotto, Francesco ; Parigi, Tommaso Lorenzo ; Villanacci, Vincenzo</creatorcontrib><description>Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variability.
The IBD-Artificial Intelligence (AI) project aims at the development of an AI-based evaluation system to support the diagnosis of IBD, semi-automatically quantifying basal plasmacytosis.
A deep learning model was trained to detect and quantify plasma cells on a public dataset of 4981 annotated images. The model was then tested on an external validation cohort of 356 intestinal biopsies of CD, UC and healthy controls. AI diagnostic performance was calculated compared to human gold standard.
The system correctly found that CD and UC samples had a greater prevalence of basal plasma cells with mean number of PCs within ROIs of 38.22 (95 % CI: 31.73, 49.04) for CD, 55.16 (46.57, 65.93) for UC, and 17.25 (CI: 12.17, 27.05) for controls. Overall, OR=4.968 (CI: 1.835, 14.638) was found for IBD compared to normal mucosa (CD: +59 %; UC: +129 %). Additionally, as expected, UC samples were found to have more plasma cells in colon than CD cases.
Our model accurately replicated human assessment of basal plasmacytosis, underscoring the value of AI models as a potential aid IBD diagnosis.</description><identifier>ISSN: 1590-8658</identifier><identifier>ISSN: 1878-3562</identifier><identifier>EISSN: 1878-3562</identifier><identifier>DOI: 10.1016/j.dld.2024.05.033</identifier><identifier>PMID: 38853093</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Artificial intelligence ; Basal plasmacytosis ; Deep learning ; Inflammatory bowel disease</subject><ispartof>Digestive and liver disease, 2025-01, Vol.57 (1), p.184-189</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2291-1b147f54a9df334740b5f61129758ca36f0acd2217ad91e36d5e8dff9752c7133</cites><orcidid>0009-0002-0718-3893 ; 0000-0002-3398-0231 ; 0009-0003-6532-3791 ; 0000-0002-5384-3605 ; 0000-0003-3930-2957 ; 0000-0002-0748-6600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1590865824007916$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38853093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furlanello, Cesare</creatorcontrib><creatorcontrib>Bussola, Nicole</creatorcontrib><creatorcontrib>Merzi, Nicolò</creatorcontrib><creatorcontrib>Pievani Trapletti, Giovanni</creatorcontrib><creatorcontrib>Cadei, Moris</creatorcontrib><creatorcontrib>Del Sordo, Rachele</creatorcontrib><creatorcontrib>Sidoni, Angelo</creatorcontrib><creatorcontrib>Ricci, Chiara</creatorcontrib><creatorcontrib>Lanzarotto, Francesco</creatorcontrib><creatorcontrib>Parigi, Tommaso Lorenzo</creatorcontrib><creatorcontrib>Villanacci, Vincenzo</creatorcontrib><title>The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)</title><title>Digestive and liver disease</title><addtitle>Dig Liver Dis</addtitle><description>Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variability.
The IBD-Artificial Intelligence (AI) project aims at the development of an AI-based evaluation system to support the diagnosis of IBD, semi-automatically quantifying basal plasmacytosis.
A deep learning model was trained to detect and quantify plasma cells on a public dataset of 4981 annotated images. The model was then tested on an external validation cohort of 356 intestinal biopsies of CD, UC and healthy controls. AI diagnostic performance was calculated compared to human gold standard.
The system correctly found that CD and UC samples had a greater prevalence of basal plasma cells with mean number of PCs within ROIs of 38.22 (95 % CI: 31.73, 49.04) for CD, 55.16 (46.57, 65.93) for UC, and 17.25 (CI: 12.17, 27.05) for controls. Overall, OR=4.968 (CI: 1.835, 14.638) was found for IBD compared to normal mucosa (CD: +59 %; UC: +129 %). Additionally, as expected, UC samples were found to have more plasma cells in colon than CD cases.
Our model accurately replicated human assessment of basal plasmacytosis, underscoring the value of AI models as a potential aid IBD diagnosis.</description><subject>Artificial intelligence</subject><subject>Basal plasmacytosis</subject><subject>Deep learning</subject><subject>Inflammatory bowel disease</subject><issn>1590-8658</issn><issn>1878-3562</issn><issn>1878-3562</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0E4lH4ADYoS1gk-BE7iVgB5VEJiQ2sLdceF1dOXOwUxN_jqsCS1Xjkc680B6FTgiuCibhcVsabimJaV5hXmLEddEjapi0ZF3Q3v3mHy1bw9gAdpbTEmBLB8T46YG3LGe7YIQovb1AY-AAfVj0MYxFsoeLorNNO-cINI3jvFjBoyEsxZvrNpTH4sHA6A8apxRCSS5vgbLBe9b0aQ_wqbsIn-GLqEqgExfnsZlpezy6O0Z5VPsHJz5yg1_u7l9vH8un5YXZ7_VRqSjtSkjmpG8tr1RnLWN3UeM6tIIR2DW-1YsJipQ2lpFGmI8CE4dAaa_M31Q1hbILOt72rGN7XkEbZu6TzLWqAsE6SYSEYaxpKMkq2qI4hpQhWrqLrVfySBMuNZ7mU2bPceJaYy-w5Z85-6tfzHsxf4ldsBq62AOQjPxxEmbTbWDQugh6lCe6f-m97XI1Y</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Furlanello, Cesare</creator><creator>Bussola, Nicole</creator><creator>Merzi, Nicolò</creator><creator>Pievani Trapletti, Giovanni</creator><creator>Cadei, Moris</creator><creator>Del Sordo, Rachele</creator><creator>Sidoni, Angelo</creator><creator>Ricci, Chiara</creator><creator>Lanzarotto, Francesco</creator><creator>Parigi, Tommaso Lorenzo</creator><creator>Villanacci, Vincenzo</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-0718-3893</orcidid><orcidid>https://orcid.org/0000-0002-3398-0231</orcidid><orcidid>https://orcid.org/0009-0003-6532-3791</orcidid><orcidid>https://orcid.org/0000-0002-5384-3605</orcidid><orcidid>https://orcid.org/0000-0003-3930-2957</orcidid><orcidid>https://orcid.org/0000-0002-0748-6600</orcidid></search><sort><creationdate>202501</creationdate><title>The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)</title><author>Furlanello, Cesare ; Bussola, Nicole ; Merzi, Nicolò ; Pievani Trapletti, Giovanni ; Cadei, Moris ; Del Sordo, Rachele ; Sidoni, Angelo ; Ricci, Chiara ; Lanzarotto, Francesco ; Parigi, Tommaso Lorenzo ; Villanacci, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2291-1b147f54a9df334740b5f61129758ca36f0acd2217ad91e36d5e8dff9752c7133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Artificial intelligence</topic><topic>Basal plasmacytosis</topic><topic>Deep learning</topic><topic>Inflammatory bowel disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furlanello, Cesare</creatorcontrib><creatorcontrib>Bussola, Nicole</creatorcontrib><creatorcontrib>Merzi, Nicolò</creatorcontrib><creatorcontrib>Pievani Trapletti, Giovanni</creatorcontrib><creatorcontrib>Cadei, Moris</creatorcontrib><creatorcontrib>Del Sordo, Rachele</creatorcontrib><creatorcontrib>Sidoni, Angelo</creatorcontrib><creatorcontrib>Ricci, Chiara</creatorcontrib><creatorcontrib>Lanzarotto, Francesco</creatorcontrib><creatorcontrib>Parigi, Tommaso Lorenzo</creatorcontrib><creatorcontrib>Villanacci, Vincenzo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Digestive and liver disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furlanello, Cesare</au><au>Bussola, Nicole</au><au>Merzi, Nicolò</au><au>Pievani Trapletti, Giovanni</au><au>Cadei, Moris</au><au>Del Sordo, Rachele</au><au>Sidoni, Angelo</au><au>Ricci, Chiara</au><au>Lanzarotto, Francesco</au><au>Parigi, Tommaso Lorenzo</au><au>Villanacci, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI)</atitle><jtitle>Digestive and liver disease</jtitle><addtitle>Dig Liver Dis</addtitle><date>2025-01</date><risdate>2025</risdate><volume>57</volume><issue>1</issue><spage>184</spage><epage>189</epage><pages>184-189</pages><issn>1590-8658</issn><issn>1878-3562</issn><eissn>1878-3562</eissn><abstract>Inflammatory bowel disease (IBD) includes Crohn's Disease (CD) and Ulcerative Colitis (UC). Correct diagnosis requires the identification of precise morphological features such basal plasmacytosis. However, histopathological interpretation can be challenging, and it is subject to high variability.
The IBD-Artificial Intelligence (AI) project aims at the development of an AI-based evaluation system to support the diagnosis of IBD, semi-automatically quantifying basal plasmacytosis.
A deep learning model was trained to detect and quantify plasma cells on a public dataset of 4981 annotated images. The model was then tested on an external validation cohort of 356 intestinal biopsies of CD, UC and healthy controls. AI diagnostic performance was calculated compared to human gold standard.
The system correctly found that CD and UC samples had a greater prevalence of basal plasma cells with mean number of PCs within ROIs of 38.22 (95 % CI: 31.73, 49.04) for CD, 55.16 (46.57, 65.93) for UC, and 17.25 (CI: 12.17, 27.05) for controls. Overall, OR=4.968 (CI: 1.835, 14.638) was found for IBD compared to normal mucosa (CD: +59 %; UC: +129 %). Additionally, as expected, UC samples were found to have more plasma cells in colon than CD cases.
Our model accurately replicated human assessment of basal plasmacytosis, underscoring the value of AI models as a potential aid IBD diagnosis.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>38853093</pmid><doi>10.1016/j.dld.2024.05.033</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0002-0718-3893</orcidid><orcidid>https://orcid.org/0000-0002-3398-0231</orcidid><orcidid>https://orcid.org/0009-0003-6532-3791</orcidid><orcidid>https://orcid.org/0000-0002-5384-3605</orcidid><orcidid>https://orcid.org/0000-0003-3930-2957</orcidid><orcidid>https://orcid.org/0000-0002-0748-6600</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1590-8658 |
ispartof | Digestive and liver disease, 2025-01, Vol.57 (1), p.184-189 |
issn | 1590-8658 1878-3562 1878-3562 |
language | eng |
recordid | cdi_proquest_miscellaneous_3066337721 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Artificial intelligence Basal plasmacytosis Deep learning Inflammatory bowel disease |
title | The development of artificial intelligence in the histological diagnosis of Inflammatory Bowel Disease (IBD-AI) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20development%20of%20artificial%20intelligence%20in%20the%20histological%20diagnosis%20of%20Inflammatory%20Bowel%20Disease%20(IBD-AI)&rft.jtitle=Digestive%20and%20liver%20disease&rft.au=Furlanello,%20Cesare&rft.date=2025-01&rft.volume=57&rft.issue=1&rft.spage=184&rft.epage=189&rft.pages=184-189&rft.issn=1590-8658&rft.eissn=1878-3562&rft_id=info:doi/10.1016/j.dld.2024.05.033&rft_dat=%3Cproquest_cross%3E3066337721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3066337721&rft_id=info:pmid/38853093&rft_els_id=S1590865824007916&rfr_iscdi=true |