Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing
The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2024-06, Vol.84 (12), p.2255-2271.e9 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2271.e9 |
---|---|
container_issue | 12 |
container_start_page | 2255 |
container_title | Molecular cell |
container_volume | 84 |
creator | Menon, Govind Mateo-Bonmati, Eduardo Reeck, Svenja Maple, Robert Wu, Zhe Ietswaart, Robert Dean, Caroline Howard, Martin |
description | The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.
[Display omitted]
•Transcription, co-transcriptional processing, and chromatin state are tightly linked•Transcription-coupled repression links H3K4me1 removal to proximal polyadenylation•Mathematical modeling reveals how this mechanistically links to silencing by PRC2•More effective transcription-coupled repression enables faster epigenetic silencing
Mechanistic links between transcription, co-transcriptional processing, chromatin state, and epigenetic silencing remain poorly understood. Menon et al. used mathematical modeling and experiments to reveal a transcription-coupled repression mechanism involving feedback between chromatin state and proximal polyadenylation, which controls transcriptional antagonism to PRC2, thereby determining the establishment rate of PRC2 silencing at a locus. |
doi_str_mv | 10.1016/j.molcel.2024.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065986309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276524004374</els_id><sourcerecordid>3065986309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1d440f8cf06259e1ca12aaf43b1cb2ecc15a2f0f4e74603c0b90673f011b3f9c3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonR-LH6D4zh6GXr0FK2vZgY41di4h70TCgdXDZtWYE1-u-l6erRE4R5XmbmIeScQcaAiat11rtOY5flkPMMygwY3yPHDOrFnDPB93f3fCHKI3ISwhoSUVb1ITkqqqpkrBLH5HPp3ZftVUcj-t4OKlo30Hcc0KuIgSoavRqC9nYzVhIXYirQuFKRtjiFEhdXSMcEdYZiQprOhlWPQxwflq771q5vaLAdDtoO76fkwKgu4NnunJG3-7vX28f588vD0-3N81xzqOKctZyDqbQBkZc1Mq1YrpThRcN0k6PWrFS5AcNxwQUUGpoaxKIwwFhTmFoXM3I5_bvx7mObBpO9DUlapwZ02yALEGVdiQLqhPIJ1d6F4NHIjU9i_LdkIEfjci0n43I0LqGUyWeKXew6bJse27_Qr-IEXE8Apj0_LXoZtE0WsLUedZSts_93-AHW8Zbm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065986309</pqid></control><display><type>article</type><title>Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Menon, Govind ; Mateo-Bonmati, Eduardo ; Reeck, Svenja ; Maple, Robert ; Wu, Zhe ; Ietswaart, Robert ; Dean, Caroline ; Howard, Martin</creator><creatorcontrib>Menon, Govind ; Mateo-Bonmati, Eduardo ; Reeck, Svenja ; Maple, Robert ; Wu, Zhe ; Ietswaart, Robert ; Dean, Caroline ; Howard, Martin</creatorcontrib><description>The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.
[Display omitted]
•Transcription, co-transcriptional processing, and chromatin state are tightly linked•Transcription-coupled repression links H3K4me1 removal to proximal polyadenylation•Mathematical modeling reveals how this mechanistically links to silencing by PRC2•More effective transcription-coupled repression enables faster epigenetic silencing
Mechanistic links between transcription, co-transcriptional processing, chromatin state, and epigenetic silencing remain poorly understood. Menon et al. used mathematical modeling and experiments to reveal a transcription-coupled repression mechanism involving feedback between chromatin state and proximal polyadenylation, which controls transcriptional antagonism to PRC2, thereby determining the establishment rate of PRC2 silencing at a locus.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2024.05.014</identifier><identifier>PMID: 38851186</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alternative polyadenylation ; analog and digital gene regulation ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Chromatin - genetics ; Chromatin - metabolism ; co-transcriptional processing ; feedback interactions ; Gene Expression Regulation, Plant ; Gene Silencing ; H3K27me3 ; H3K4me1 ; Histone Demethylases - genetics ; Histone Demethylases - metabolism ; Histones - genetics ; Histones - metabolism ; MADS Domain Proteins - genetics ; MADS Domain Proteins - metabolism ; mechanistic mathematical modeling ; Polyadenylation ; Polycomb Repressive Complex 2 - genetics ; Polycomb Repressive Complex 2 - metabolism ; Polycomb silencing ; proximal termination ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Transcription Termination, Genetic ; Transcription, Genetic ; transcriptional antagonism</subject><ispartof>Molecular cell, 2024-06, Vol.84 (12), p.2255-2271.e9</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1d440f8cf06259e1ca12aaf43b1cb2ecc15a2f0f4e74603c0b90673f011b3f9c3</citedby><cites>FETCH-LOGICAL-c408t-1d440f8cf06259e1ca12aaf43b1cb2ecc15a2f0f4e74603c0b90673f011b3f9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276524004374$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38851186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menon, Govind</creatorcontrib><creatorcontrib>Mateo-Bonmati, Eduardo</creatorcontrib><creatorcontrib>Reeck, Svenja</creatorcontrib><creatorcontrib>Maple, Robert</creatorcontrib><creatorcontrib>Wu, Zhe</creatorcontrib><creatorcontrib>Ietswaart, Robert</creatorcontrib><creatorcontrib>Dean, Caroline</creatorcontrib><creatorcontrib>Howard, Martin</creatorcontrib><title>Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.
[Display omitted]
•Transcription, co-transcriptional processing, and chromatin state are tightly linked•Transcription-coupled repression links H3K4me1 removal to proximal polyadenylation•Mathematical modeling reveals how this mechanistically links to silencing by PRC2•More effective transcription-coupled repression enables faster epigenetic silencing
Mechanistic links between transcription, co-transcriptional processing, chromatin state, and epigenetic silencing remain poorly understood. Menon et al. used mathematical modeling and experiments to reveal a transcription-coupled repression mechanism involving feedback between chromatin state and proximal polyadenylation, which controls transcriptional antagonism to PRC2, thereby determining the establishment rate of PRC2 silencing at a locus.</description><subject>alternative polyadenylation</subject><subject>analog and digital gene regulation</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>co-transcriptional processing</subject><subject>feedback interactions</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>H3K27me3</subject><subject>H3K4me1</subject><subject>Histone Demethylases - genetics</subject><subject>Histone Demethylases - metabolism</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>MADS Domain Proteins - genetics</subject><subject>MADS Domain Proteins - metabolism</subject><subject>mechanistic mathematical modeling</subject><subject>Polyadenylation</subject><subject>Polycomb Repressive Complex 2 - genetics</subject><subject>Polycomb Repressive Complex 2 - metabolism</subject><subject>Polycomb silencing</subject><subject>proximal termination</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Transcription Termination, Genetic</subject><subject>Transcription, Genetic</subject><subject>transcriptional antagonism</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PxCAQhonR-LH6D4zh6GXr0FK2vZgY41di4h70TCgdXDZtWYE1-u-l6erRE4R5XmbmIeScQcaAiat11rtOY5flkPMMygwY3yPHDOrFnDPB93f3fCHKI3ISwhoSUVb1ITkqqqpkrBLH5HPp3ZftVUcj-t4OKlo30Hcc0KuIgSoavRqC9nYzVhIXYirQuFKRtjiFEhdXSMcEdYZiQprOhlWPQxwflq771q5vaLAdDtoO76fkwKgu4NnunJG3-7vX28f588vD0-3N81xzqOKctZyDqbQBkZc1Mq1YrpThRcN0k6PWrFS5AcNxwQUUGpoaxKIwwFhTmFoXM3I5_bvx7mObBpO9DUlapwZ02yALEGVdiQLqhPIJ1d6F4NHIjU9i_LdkIEfjci0n43I0LqGUyWeKXew6bJse27_Qr-IEXE8Apj0_LXoZtE0WsLUedZSts_93-AHW8Zbm</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Menon, Govind</creator><creator>Mateo-Bonmati, Eduardo</creator><creator>Reeck, Svenja</creator><creator>Maple, Robert</creator><creator>Wu, Zhe</creator><creator>Ietswaart, Robert</creator><creator>Dean, Caroline</creator><creator>Howard, Martin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240620</creationdate><title>Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing</title><author>Menon, Govind ; Mateo-Bonmati, Eduardo ; Reeck, Svenja ; Maple, Robert ; Wu, Zhe ; Ietswaart, Robert ; Dean, Caroline ; Howard, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1d440f8cf06259e1ca12aaf43b1cb2ecc15a2f0f4e74603c0b90673f011b3f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alternative polyadenylation</topic><topic>analog and digital gene regulation</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>co-transcriptional processing</topic><topic>feedback interactions</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>H3K27me3</topic><topic>H3K4me1</topic><topic>Histone Demethylases - genetics</topic><topic>Histone Demethylases - metabolism</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>MADS Domain Proteins - genetics</topic><topic>MADS Domain Proteins - metabolism</topic><topic>mechanistic mathematical modeling</topic><topic>Polyadenylation</topic><topic>Polycomb Repressive Complex 2 - genetics</topic><topic>Polycomb Repressive Complex 2 - metabolism</topic><topic>Polycomb silencing</topic><topic>proximal termination</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Transcription Termination, Genetic</topic><topic>Transcription, Genetic</topic><topic>transcriptional antagonism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menon, Govind</creatorcontrib><creatorcontrib>Mateo-Bonmati, Eduardo</creatorcontrib><creatorcontrib>Reeck, Svenja</creatorcontrib><creatorcontrib>Maple, Robert</creatorcontrib><creatorcontrib>Wu, Zhe</creatorcontrib><creatorcontrib>Ietswaart, Robert</creatorcontrib><creatorcontrib>Dean, Caroline</creatorcontrib><creatorcontrib>Howard, Martin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menon, Govind</au><au>Mateo-Bonmati, Eduardo</au><au>Reeck, Svenja</au><au>Maple, Robert</au><au>Wu, Zhe</au><au>Ietswaart, Robert</au><au>Dean, Caroline</au><au>Howard, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2024-06-20</date><risdate>2024</risdate><volume>84</volume><issue>12</issue><spage>2255</spage><epage>2271.e9</epage><pages>2255-2271.e9</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.
[Display omitted]
•Transcription, co-transcriptional processing, and chromatin state are tightly linked•Transcription-coupled repression links H3K4me1 removal to proximal polyadenylation•Mathematical modeling reveals how this mechanistically links to silencing by PRC2•More effective transcription-coupled repression enables faster epigenetic silencing
Mechanistic links between transcription, co-transcriptional processing, chromatin state, and epigenetic silencing remain poorly understood. Menon et al. used mathematical modeling and experiments to reveal a transcription-coupled repression mechanism involving feedback between chromatin state and proximal polyadenylation, which controls transcriptional antagonism to PRC2, thereby determining the establishment rate of PRC2 silencing at a locus.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38851186</pmid><doi>10.1016/j.molcel.2024.05.014</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2024-06, Vol.84 (12), p.2255-2271.e9 |
issn | 1097-2765 1097-4164 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_3065986309 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | alternative polyadenylation analog and digital gene regulation Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Chromatin - genetics Chromatin - metabolism co-transcriptional processing feedback interactions Gene Expression Regulation, Plant Gene Silencing H3K27me3 H3K4me1 Histone Demethylases - genetics Histone Demethylases - metabolism Histones - genetics Histones - metabolism MADS Domain Proteins - genetics MADS Domain Proteins - metabolism mechanistic mathematical modeling Polyadenylation Polycomb Repressive Complex 2 - genetics Polycomb Repressive Complex 2 - metabolism Polycomb silencing proximal termination RNA Polymerase II - genetics RNA Polymerase II - metabolism RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Transcription Termination, Genetic Transcription, Genetic transcriptional antagonism |
title | Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximal%20termination%20generates%20a%20transcriptional%20state%20that%20determines%20the%20rate%20of%20establishment%20of%20Polycomb%20silencing&rft.jtitle=Molecular%20cell&rft.au=Menon,%20Govind&rft.date=2024-06-20&rft.volume=84&rft.issue=12&rft.spage=2255&rft.epage=2271.e9&rft.pages=2255-2271.e9&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2024.05.014&rft_dat=%3Cproquest_cross%3E3065986309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065986309&rft_id=info:pmid/38851186&rft_els_id=S1097276524004374&rfr_iscdi=true |