Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2024-06, Vol.84 (12), p.2255-2271.e9
Hauptverfasser: Menon, Govind, Mateo-Bonmati, Eduardo, Reeck, Svenja, Maple, Robert, Wu, Zhe, Ietswaart, Robert, Dean, Caroline, Howard, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2271.e9
container_issue 12
container_start_page 2255
container_title Molecular cell
container_volume 84
creator Menon, Govind
Mateo-Bonmati, Eduardo
Reeck, Svenja
Maple, Robert
Wu, Zhe
Ietswaart, Robert
Dean, Caroline
Howard, Martin
description The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing. [Display omitted] •Transcription, co-transcriptional processing, and chromatin state are tightly linked•Transcription-coupled repression links H3K4me1 removal to proximal polyadenylation•Mathematical modeling reveals how this mechanistically links to silencing by PRC2•More effective transcription-coupled repression enables faster epigenetic silencing Mechanistic links between transcription, co-transcriptional processing, chromatin state, and epigenetic silencing remain poorly understood. Menon et al. used mathematical modeling and experiments to reveal a transcription-coupled repression mechanism involving feedback between chromatin state and proximal polyadenylation, which controls transcriptional antagonism to PRC2, thereby determining the establishment rate of PRC2 silencing at a locus.
doi_str_mv 10.1016/j.molcel.2024.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065986309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276524004374</els_id><sourcerecordid>3065986309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1d440f8cf06259e1ca12aaf43b1cb2ecc15a2f0f4e74603c0b90673f011b3f9c3</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonR-LH6D4zh6GXr0FK2vZgY41di4h70TCgdXDZtWYE1-u-l6erRE4R5XmbmIeScQcaAiat11rtOY5flkPMMygwY3yPHDOrFnDPB93f3fCHKI3ISwhoSUVb1ITkqqqpkrBLH5HPp3ZftVUcj-t4OKlo30Hcc0KuIgSoavRqC9nYzVhIXYirQuFKRtjiFEhdXSMcEdYZiQprOhlWPQxwflq771q5vaLAdDtoO76fkwKgu4NnunJG3-7vX28f588vD0-3N81xzqOKctZyDqbQBkZc1Mq1YrpThRcN0k6PWrFS5AcNxwQUUGpoaxKIwwFhTmFoXM3I5_bvx7mObBpO9DUlapwZ02yALEGVdiQLqhPIJ1d6F4NHIjU9i_LdkIEfjci0n43I0LqGUyWeKXew6bJse27_Qr-IEXE8Apj0_LXoZtE0WsLUedZSts_93-AHW8Zbm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065986309</pqid></control><display><type>article</type><title>Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Menon, Govind ; Mateo-Bonmati, Eduardo ; Reeck, Svenja ; Maple, Robert ; Wu, Zhe ; Ietswaart, Robert ; Dean, Caroline ; Howard, Martin</creator><creatorcontrib>Menon, Govind ; Mateo-Bonmati, Eduardo ; Reeck, Svenja ; Maple, Robert ; Wu, Zhe ; Ietswaart, Robert ; Dean, Caroline ; Howard, Martin</creatorcontrib><description>The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing. [Display omitted] •Transcription, co-transcriptional processing, and chromatin state are tightly linked•Transcription-coupled repression links H3K4me1 removal to proximal polyadenylation•Mathematical modeling reveals how this mechanistically links to silencing by PRC2•More effective transcription-coupled repression enables faster epigenetic silencing Mechanistic links between transcription, co-transcriptional processing, chromatin state, and epigenetic silencing remain poorly understood. Menon et al. used mathematical modeling and experiments to reveal a transcription-coupled repression mechanism involving feedback between chromatin state and proximal polyadenylation, which controls transcriptional antagonism to PRC2, thereby determining the establishment rate of PRC2 silencing at a locus.</description><identifier>ISSN: 1097-2765</identifier><identifier>ISSN: 1097-4164</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2024.05.014</identifier><identifier>PMID: 38851186</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alternative polyadenylation ; analog and digital gene regulation ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Chromatin - genetics ; Chromatin - metabolism ; co-transcriptional processing ; feedback interactions ; Gene Expression Regulation, Plant ; Gene Silencing ; H3K27me3 ; H3K4me1 ; Histone Demethylases - genetics ; Histone Demethylases - metabolism ; Histones - genetics ; Histones - metabolism ; MADS Domain Proteins - genetics ; MADS Domain Proteins - metabolism ; mechanistic mathematical modeling ; Polyadenylation ; Polycomb Repressive Complex 2 - genetics ; Polycomb Repressive Complex 2 - metabolism ; Polycomb silencing ; proximal termination ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Transcription Termination, Genetic ; Transcription, Genetic ; transcriptional antagonism</subject><ispartof>Molecular cell, 2024-06, Vol.84 (12), p.2255-2271.e9</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1d440f8cf06259e1ca12aaf43b1cb2ecc15a2f0f4e74603c0b90673f011b3f9c3</citedby><cites>FETCH-LOGICAL-c408t-1d440f8cf06259e1ca12aaf43b1cb2ecc15a2f0f4e74603c0b90673f011b3f9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276524004374$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38851186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menon, Govind</creatorcontrib><creatorcontrib>Mateo-Bonmati, Eduardo</creatorcontrib><creatorcontrib>Reeck, Svenja</creatorcontrib><creatorcontrib>Maple, Robert</creatorcontrib><creatorcontrib>Wu, Zhe</creatorcontrib><creatorcontrib>Ietswaart, Robert</creatorcontrib><creatorcontrib>Dean, Caroline</creatorcontrib><creatorcontrib>Howard, Martin</creatorcontrib><title>Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing. [Display omitted] •Transcription, co-transcriptional processing, and chromatin state are tightly linked•Transcription-coupled repression links H3K4me1 removal to proximal polyadenylation•Mathematical modeling reveals how this mechanistically links to silencing by PRC2•More effective transcription-coupled repression enables faster epigenetic silencing Mechanistic links between transcription, co-transcriptional processing, chromatin state, and epigenetic silencing remain poorly understood. Menon et al. used mathematical modeling and experiments to reveal a transcription-coupled repression mechanism involving feedback between chromatin state and proximal polyadenylation, which controls transcriptional antagonism to PRC2, thereby determining the establishment rate of PRC2 silencing at a locus.</description><subject>alternative polyadenylation</subject><subject>analog and digital gene regulation</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>co-transcriptional processing</subject><subject>feedback interactions</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>H3K27me3</subject><subject>H3K4me1</subject><subject>Histone Demethylases - genetics</subject><subject>Histone Demethylases - metabolism</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>MADS Domain Proteins - genetics</subject><subject>MADS Domain Proteins - metabolism</subject><subject>mechanistic mathematical modeling</subject><subject>Polyadenylation</subject><subject>Polycomb Repressive Complex 2 - genetics</subject><subject>Polycomb Repressive Complex 2 - metabolism</subject><subject>Polycomb silencing</subject><subject>proximal termination</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Transcription Termination, Genetic</subject><subject>Transcription, Genetic</subject><subject>transcriptional antagonism</subject><issn>1097-2765</issn><issn>1097-4164</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PxCAQhonR-LH6D4zh6GXr0FK2vZgY41di4h70TCgdXDZtWYE1-u-l6erRE4R5XmbmIeScQcaAiat11rtOY5flkPMMygwY3yPHDOrFnDPB93f3fCHKI3ISwhoSUVb1ITkqqqpkrBLH5HPp3ZftVUcj-t4OKlo30Hcc0KuIgSoavRqC9nYzVhIXYirQuFKRtjiFEhdXSMcEdYZiQprOhlWPQxwflq771q5vaLAdDtoO76fkwKgu4NnunJG3-7vX28f588vD0-3N81xzqOKctZyDqbQBkZc1Mq1YrpThRcN0k6PWrFS5AcNxwQUUGpoaxKIwwFhTmFoXM3I5_bvx7mObBpO9DUlapwZ02yALEGVdiQLqhPIJ1d6F4NHIjU9i_LdkIEfjci0n43I0LqGUyWeKXew6bJse27_Qr-IEXE8Apj0_LXoZtE0WsLUedZSts_93-AHW8Zbm</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Menon, Govind</creator><creator>Mateo-Bonmati, Eduardo</creator><creator>Reeck, Svenja</creator><creator>Maple, Robert</creator><creator>Wu, Zhe</creator><creator>Ietswaart, Robert</creator><creator>Dean, Caroline</creator><creator>Howard, Martin</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240620</creationdate><title>Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing</title><author>Menon, Govind ; Mateo-Bonmati, Eduardo ; Reeck, Svenja ; Maple, Robert ; Wu, Zhe ; Ietswaart, Robert ; Dean, Caroline ; Howard, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1d440f8cf06259e1ca12aaf43b1cb2ecc15a2f0f4e74603c0b90673f011b3f9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>alternative polyadenylation</topic><topic>analog and digital gene regulation</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>co-transcriptional processing</topic><topic>feedback interactions</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>H3K27me3</topic><topic>H3K4me1</topic><topic>Histone Demethylases - genetics</topic><topic>Histone Demethylases - metabolism</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>MADS Domain Proteins - genetics</topic><topic>MADS Domain Proteins - metabolism</topic><topic>mechanistic mathematical modeling</topic><topic>Polyadenylation</topic><topic>Polycomb Repressive Complex 2 - genetics</topic><topic>Polycomb Repressive Complex 2 - metabolism</topic><topic>Polycomb silencing</topic><topic>proximal termination</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Transcription Termination, Genetic</topic><topic>Transcription, Genetic</topic><topic>transcriptional antagonism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menon, Govind</creatorcontrib><creatorcontrib>Mateo-Bonmati, Eduardo</creatorcontrib><creatorcontrib>Reeck, Svenja</creatorcontrib><creatorcontrib>Maple, Robert</creatorcontrib><creatorcontrib>Wu, Zhe</creatorcontrib><creatorcontrib>Ietswaart, Robert</creatorcontrib><creatorcontrib>Dean, Caroline</creatorcontrib><creatorcontrib>Howard, Martin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menon, Govind</au><au>Mateo-Bonmati, Eduardo</au><au>Reeck, Svenja</au><au>Maple, Robert</au><au>Wu, Zhe</au><au>Ietswaart, Robert</au><au>Dean, Caroline</au><au>Howard, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2024-06-20</date><risdate>2024</risdate><volume>84</volume><issue>12</issue><spage>2255</spage><epage>2271.e9</epage><pages>2255-2271.e9</pages><issn>1097-2765</issn><issn>1097-4164</issn><eissn>1097-4164</eissn><abstract>The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing. [Display omitted] •Transcription, co-transcriptional processing, and chromatin state are tightly linked•Transcription-coupled repression links H3K4me1 removal to proximal polyadenylation•Mathematical modeling reveals how this mechanistically links to silencing by PRC2•More effective transcription-coupled repression enables faster epigenetic silencing Mechanistic links between transcription, co-transcriptional processing, chromatin state, and epigenetic silencing remain poorly understood. Menon et al. used mathematical modeling and experiments to reveal a transcription-coupled repression mechanism involving feedback between chromatin state and proximal polyadenylation, which controls transcriptional antagonism to PRC2, thereby determining the establishment rate of PRC2 silencing at a locus.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38851186</pmid><doi>10.1016/j.molcel.2024.05.014</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2024-06, Vol.84 (12), p.2255-2271.e9
issn 1097-2765
1097-4164
1097-4164
language eng
recordid cdi_proquest_miscellaneous_3065986309
source MEDLINE; Elsevier ScienceDirect Journals
subjects alternative polyadenylation
analog and digital gene regulation
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Chromatin - genetics
Chromatin - metabolism
co-transcriptional processing
feedback interactions
Gene Expression Regulation, Plant
Gene Silencing
H3K27me3
H3K4me1
Histone Demethylases - genetics
Histone Demethylases - metabolism
Histones - genetics
Histones - metabolism
MADS Domain Proteins - genetics
MADS Domain Proteins - metabolism
mechanistic mathematical modeling
Polyadenylation
Polycomb Repressive Complex 2 - genetics
Polycomb Repressive Complex 2 - metabolism
Polycomb silencing
proximal termination
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Transcription Termination, Genetic
Transcription, Genetic
transcriptional antagonism
title Proximal termination generates a transcriptional state that determines the rate of establishment of Polycomb silencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proximal%20termination%20generates%20a%20transcriptional%20state%20that%20determines%20the%20rate%20of%20establishment%20of%20Polycomb%20silencing&rft.jtitle=Molecular%20cell&rft.au=Menon,%20Govind&rft.date=2024-06-20&rft.volume=84&rft.issue=12&rft.spage=2255&rft.epage=2271.e9&rft.pages=2255-2271.e9&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2024.05.014&rft_dat=%3Cproquest_cross%3E3065986309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065986309&rft_id=info:pmid/38851186&rft_els_id=S1097276524004374&rfr_iscdi=true