Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound
To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound. The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension pl...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2024-09, Vol.50 (9), p.1329-1338 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1338 |
---|---|
container_issue | 9 |
container_start_page | 1329 |
container_title | Ultrasound in medicine & biology |
container_volume | 50 |
creator | Guo, Zhijie Lu, Xiduo Yao, Jiezhi Zhou, Yongsong Chen, Chaoyu Chen, Jiongquan Yang, Danling Cao, Yan Zheng, Wei Yang, Xin Ni, Dong |
description | To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound.
The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption.
The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p < 0.01), respectively.
AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications. |
doi_str_mv | 10.1016/j.ultrasmedbio.2024.05.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065985357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562924002102</els_id><sourcerecordid>3065985357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-dc18bdcf3bbb275014f036483e2dd5f771b5648c31a221008912ee43b9876d4c3</originalsourceid><addsrcrecordid>eNqNkEtv1DAQgC0EokvhLyCLE5eEsR3nwa3qshRpERxYiZvl2BPkJYmLHyuVX4_LFsSR02g037w-Ql4xqBmw9s2xznMKOi5oR-drDrypQdYA8hHZsL4bKj6wr4_JBgSwSrZ8uCDPYjwCQNeK7im5EH3fSCH4hnzf5Xm-o1c5-UUntHTvjZ7dT52cX6leLf2IOuaAC66J-onu8aSTD_TG6ZQj3bpSiIWN9BDd-o2Kaks_43xyhu5mX8DD71t9Xu1z8mTSc8QXD_GSHHbvvlzfVPtP7z9cX-0rw6VIlTWsH62ZxDiOvJPAmglE2_QCubVy6jo2ypIawTTnDKAfGEdsxDj0XWsbIy7J6_Pc2-B_ZIxJLS4anGe9os9RCWjl0Eshu4K-PaMm-BgDTuo2uEWHO8VA3ctWR_WvbHUvW4FURXZpfvmwJ4-l_Lf1j90CbM8Alm9PDoOKxuFq0LqAJinr3f_s-QUHb5g6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065985357</pqid></control><display><type>article</type><title>Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound</title><source>Elsevier ScienceDirect Journals</source><creator>Guo, Zhijie ; Lu, Xiduo ; Yao, Jiezhi ; Zhou, Yongsong ; Chen, Chaoyu ; Chen, Jiongquan ; Yang, Danling ; Cao, Yan ; Zheng, Wei ; Yang, Xin ; Ni, Dong</creator><creatorcontrib>Guo, Zhijie ; Lu, Xiduo ; Yao, Jiezhi ; Zhou, Yongsong ; Chen, Chaoyu ; Chen, Jiongquan ; Yang, Danling ; Cao, Yan ; Zheng, Wei ; Yang, Xin ; Ni, Dong</creatorcontrib><description>To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound.
The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption.
The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p < 0.01), respectively.
AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications.</description><identifier>ISSN: 0301-5629</identifier><identifier>ISSN: 1879-291X</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2024.05.005</identifier><identifier>PMID: 38845332</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Deep learning ; Levator hiatus ; Pelvic floor ultrasound ; Pelvic organ prolapse</subject><ispartof>Ultrasound in medicine & biology, 2024-09, Vol.50 (9), p.1329-1338</ispartof><rights>2024 World Federation for Ultrasound in Medicine & Biology</rights><rights>Copyright © 2024 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-dc18bdcf3bbb275014f036483e2dd5f771b5648c31a221008912ee43b9876d4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301562924002102$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38845332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Zhijie</creatorcontrib><creatorcontrib>Lu, Xiduo</creatorcontrib><creatorcontrib>Yao, Jiezhi</creatorcontrib><creatorcontrib>Zhou, Yongsong</creatorcontrib><creatorcontrib>Chen, Chaoyu</creatorcontrib><creatorcontrib>Chen, Jiongquan</creatorcontrib><creatorcontrib>Yang, Danling</creatorcontrib><creatorcontrib>Cao, Yan</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><title>Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound</title><title>Ultrasound in medicine & biology</title><addtitle>Ultrasound Med Biol</addtitle><description>To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound.
The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption.
The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p < 0.01), respectively.
AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications.</description><subject>Deep learning</subject><subject>Levator hiatus</subject><subject>Pelvic floor ultrasound</subject><subject>Pelvic organ prolapse</subject><issn>0301-5629</issn><issn>1879-291X</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1DAQgC0EokvhLyCLE5eEsR3nwa3qshRpERxYiZvl2BPkJYmLHyuVX4_LFsSR02g037w-Ql4xqBmw9s2xznMKOi5oR-drDrypQdYA8hHZsL4bKj6wr4_JBgSwSrZ8uCDPYjwCQNeK7im5EH3fSCH4hnzf5Xm-o1c5-UUntHTvjZ7dT52cX6leLf2IOuaAC66J-onu8aSTD_TG6ZQj3bpSiIWN9BDd-o2Kaks_43xyhu5mX8DD71t9Xu1z8mTSc8QXD_GSHHbvvlzfVPtP7z9cX-0rw6VIlTWsH62ZxDiOvJPAmglE2_QCubVy6jo2ypIawTTnDKAfGEdsxDj0XWsbIy7J6_Pc2-B_ZIxJLS4anGe9os9RCWjl0Eshu4K-PaMm-BgDTuo2uEWHO8VA3ctWR_WvbHUvW4FURXZpfvmwJ4-l_Lf1j90CbM8Alm9PDoOKxuFq0LqAJinr3f_s-QUHb5g6</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Guo, Zhijie</creator><creator>Lu, Xiduo</creator><creator>Yao, Jiezhi</creator><creator>Zhou, Yongsong</creator><creator>Chen, Chaoyu</creator><creator>Chen, Jiongquan</creator><creator>Yang, Danling</creator><creator>Cao, Yan</creator><creator>Zheng, Wei</creator><creator>Yang, Xin</creator><creator>Ni, Dong</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240901</creationdate><title>Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound</title><author>Guo, Zhijie ; Lu, Xiduo ; Yao, Jiezhi ; Zhou, Yongsong ; Chen, Chaoyu ; Chen, Jiongquan ; Yang, Danling ; Cao, Yan ; Zheng, Wei ; Yang, Xin ; Ni, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-dc18bdcf3bbb275014f036483e2dd5f771b5648c31a221008912ee43b9876d4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Levator hiatus</topic><topic>Pelvic floor ultrasound</topic><topic>Pelvic organ prolapse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhijie</creatorcontrib><creatorcontrib>Lu, Xiduo</creatorcontrib><creatorcontrib>Yao, Jiezhi</creatorcontrib><creatorcontrib>Zhou, Yongsong</creatorcontrib><creatorcontrib>Chen, Chaoyu</creatorcontrib><creatorcontrib>Chen, Jiongquan</creatorcontrib><creatorcontrib>Yang, Danling</creatorcontrib><creatorcontrib>Cao, Yan</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhijie</au><au>Lu, Xiduo</au><au>Yao, Jiezhi</au><au>Zhou, Yongsong</au><au>Chen, Chaoyu</au><au>Chen, Jiongquan</au><au>Yang, Danling</au><au>Cao, Yan</au><au>Zheng, Wei</au><au>Yang, Xin</au><au>Ni, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound</atitle><jtitle>Ultrasound in medicine & biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>50</volume><issue>9</issue><spage>1329</spage><epage>1338</epage><pages>1329-1338</pages><issn>0301-5629</issn><issn>1879-291X</issn><eissn>1879-291X</eissn><abstract>To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound.
The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption.
The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p < 0.01), respectively.
AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>38845332</pmid><doi>10.1016/j.ultrasmedbio.2024.05.005</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-5629 |
ispartof | Ultrasound in medicine & biology, 2024-09, Vol.50 (9), p.1329-1338 |
issn | 0301-5629 1879-291X 1879-291X |
language | eng |
recordid | cdi_proquest_miscellaneous_3065985357 |
source | Elsevier ScienceDirect Journals |
subjects | Deep learning Levator hiatus Pelvic floor ultrasound Pelvic organ prolapse |
title | Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Localization%20and%20Measurement%20of%20Levator%20Hiatus%20Dimensions%20Using%203-D%20Pelvic%20Floor%20Ultrasound&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Guo,%20Zhijie&rft.date=2024-09-01&rft.volume=50&rft.issue=9&rft.spage=1329&rft.epage=1338&rft.pages=1329-1338&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2024.05.005&rft_dat=%3Cproquest_cross%3E3065985357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065985357&rft_id=info:pmid/38845332&rft_els_id=S0301562924002102&rfr_iscdi=true |