Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound

To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound. The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 2024-09, Vol.50 (9), p.1329-1338
Hauptverfasser: Guo, Zhijie, Lu, Xiduo, Yao, Jiezhi, Zhou, Yongsong, Chen, Chaoyu, Chen, Jiongquan, Yang, Danling, Cao, Yan, Zheng, Wei, Yang, Xin, Ni, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1338
container_issue 9
container_start_page 1329
container_title Ultrasound in medicine & biology
container_volume 50
creator Guo, Zhijie
Lu, Xiduo
Yao, Jiezhi
Zhou, Yongsong
Chen, Chaoyu
Chen, Jiongquan
Yang, Danling
Cao, Yan
Zheng, Wei
Yang, Xin
Ni, Dong
description To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound. The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption. The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p < 0.01), respectively. AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications.
doi_str_mv 10.1016/j.ultrasmedbio.2024.05.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065985357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301562924002102</els_id><sourcerecordid>3065985357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-dc18bdcf3bbb275014f036483e2dd5f771b5648c31a221008912ee43b9876d4c3</originalsourceid><addsrcrecordid>eNqNkEtv1DAQgC0EokvhLyCLE5eEsR3nwa3qshRpERxYiZvl2BPkJYmLHyuVX4_LFsSR02g037w-Ql4xqBmw9s2xznMKOi5oR-drDrypQdYA8hHZsL4bKj6wr4_JBgSwSrZ8uCDPYjwCQNeK7im5EH3fSCH4hnzf5Xm-o1c5-UUntHTvjZ7dT52cX6leLf2IOuaAC66J-onu8aSTD_TG6ZQj3bpSiIWN9BDd-o2Kaks_43xyhu5mX8DD71t9Xu1z8mTSc8QXD_GSHHbvvlzfVPtP7z9cX-0rw6VIlTWsH62ZxDiOvJPAmglE2_QCubVy6jo2ypIawTTnDKAfGEdsxDj0XWsbIy7J6_Pc2-B_ZIxJLS4anGe9os9RCWjl0Eshu4K-PaMm-BgDTuo2uEWHO8VA3ctWR_WvbHUvW4FURXZpfvmwJ4-l_Lf1j90CbM8Alm9PDoOKxuFq0LqAJinr3f_s-QUHb5g6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065985357</pqid></control><display><type>article</type><title>Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound</title><source>Elsevier ScienceDirect Journals</source><creator>Guo, Zhijie ; Lu, Xiduo ; Yao, Jiezhi ; Zhou, Yongsong ; Chen, Chaoyu ; Chen, Jiongquan ; Yang, Danling ; Cao, Yan ; Zheng, Wei ; Yang, Xin ; Ni, Dong</creator><creatorcontrib>Guo, Zhijie ; Lu, Xiduo ; Yao, Jiezhi ; Zhou, Yongsong ; Chen, Chaoyu ; Chen, Jiongquan ; Yang, Danling ; Cao, Yan ; Zheng, Wei ; Yang, Xin ; Ni, Dong</creatorcontrib><description>To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound. The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption. The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p &lt; 0.01), respectively. AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications.</description><identifier>ISSN: 0301-5629</identifier><identifier>ISSN: 1879-291X</identifier><identifier>EISSN: 1879-291X</identifier><identifier>DOI: 10.1016/j.ultrasmedbio.2024.05.005</identifier><identifier>PMID: 38845332</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Deep learning ; Levator hiatus ; Pelvic floor ultrasound ; Pelvic organ prolapse</subject><ispartof>Ultrasound in medicine &amp; biology, 2024-09, Vol.50 (9), p.1329-1338</ispartof><rights>2024 World Federation for Ultrasound in Medicine &amp; Biology</rights><rights>Copyright © 2024 World Federation for Ultrasound in Medicine &amp; Biology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-dc18bdcf3bbb275014f036483e2dd5f771b5648c31a221008912ee43b9876d4c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0301562924002102$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38845332$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Zhijie</creatorcontrib><creatorcontrib>Lu, Xiduo</creatorcontrib><creatorcontrib>Yao, Jiezhi</creatorcontrib><creatorcontrib>Zhou, Yongsong</creatorcontrib><creatorcontrib>Chen, Chaoyu</creatorcontrib><creatorcontrib>Chen, Jiongquan</creatorcontrib><creatorcontrib>Yang, Danling</creatorcontrib><creatorcontrib>Cao, Yan</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><title>Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound</title><title>Ultrasound in medicine &amp; biology</title><addtitle>Ultrasound Med Biol</addtitle><description>To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound. The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption. The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p &lt; 0.01), respectively. AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications.</description><subject>Deep learning</subject><subject>Levator hiatus</subject><subject>Pelvic floor ultrasound</subject><subject>Pelvic organ prolapse</subject><issn>0301-5629</issn><issn>1879-291X</issn><issn>1879-291X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1DAQgC0EokvhLyCLE5eEsR3nwa3qshRpERxYiZvl2BPkJYmLHyuVX4_LFsSR02g037w-Ql4xqBmw9s2xznMKOi5oR-drDrypQdYA8hHZsL4bKj6wr4_JBgSwSrZ8uCDPYjwCQNeK7im5EH3fSCH4hnzf5Xm-o1c5-UUntHTvjZ7dT52cX6leLf2IOuaAC66J-onu8aSTD_TG6ZQj3bpSiIWN9BDd-o2Kaks_43xyhu5mX8DD71t9Xu1z8mTSc8QXD_GSHHbvvlzfVPtP7z9cX-0rw6VIlTWsH62ZxDiOvJPAmglE2_QCubVy6jo2ypIawTTnDKAfGEdsxDj0XWsbIy7J6_Pc2-B_ZIxJLS4anGe9os9RCWjl0Eshu4K-PaMm-BgDTuo2uEWHO8VA3ctWR_WvbHUvW4FURXZpfvmwJ4-l_Lf1j90CbM8Alm9PDoOKxuFq0LqAJinr3f_s-QUHb5g6</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Guo, Zhijie</creator><creator>Lu, Xiduo</creator><creator>Yao, Jiezhi</creator><creator>Zhou, Yongsong</creator><creator>Chen, Chaoyu</creator><creator>Chen, Jiongquan</creator><creator>Yang, Danling</creator><creator>Cao, Yan</creator><creator>Zheng, Wei</creator><creator>Yang, Xin</creator><creator>Ni, Dong</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240901</creationdate><title>Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound</title><author>Guo, Zhijie ; Lu, Xiduo ; Yao, Jiezhi ; Zhou, Yongsong ; Chen, Chaoyu ; Chen, Jiongquan ; Yang, Danling ; Cao, Yan ; Zheng, Wei ; Yang, Xin ; Ni, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-dc18bdcf3bbb275014f036483e2dd5f771b5648c31a221008912ee43b9876d4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Levator hiatus</topic><topic>Pelvic floor ultrasound</topic><topic>Pelvic organ prolapse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhijie</creatorcontrib><creatorcontrib>Lu, Xiduo</creatorcontrib><creatorcontrib>Yao, Jiezhi</creatorcontrib><creatorcontrib>Zhou, Yongsong</creatorcontrib><creatorcontrib>Chen, Chaoyu</creatorcontrib><creatorcontrib>Chen, Jiongquan</creatorcontrib><creatorcontrib>Yang, Danling</creatorcontrib><creatorcontrib>Cao, Yan</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasound in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhijie</au><au>Lu, Xiduo</au><au>Yao, Jiezhi</au><au>Zhou, Yongsong</au><au>Chen, Chaoyu</au><au>Chen, Jiongquan</au><au>Yang, Danling</au><au>Cao, Yan</au><au>Zheng, Wei</au><au>Yang, Xin</au><au>Ni, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound</atitle><jtitle>Ultrasound in medicine &amp; biology</jtitle><addtitle>Ultrasound Med Biol</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>50</volume><issue>9</issue><spage>1329</spage><epage>1338</epage><pages>1329-1338</pages><issn>0301-5629</issn><issn>1879-291X</issn><eissn>1879-291X</eissn><abstract>To develop an algorithm for the automated localization and measurement of levator hiatus (LH) dimensions (AI-LH) using 3-D pelvic floor ultrasound. The AI-LH included a 3-D plane regression model and a 2-D segmentation model, which first achieved automated localization of the minimal LH dimension plane (C-plane) and measurement of the hiatal area (HA) on maximum Valsalva on the rendered LH images, but not on the C-plane. The dataset included 600 volumetric data. We compared AI-LH with sonographer difference (ASD) as well as the inter-sonographer differences (IESD) in the testing dataset (n = 240). The assessment encompassed the mean absolute error (MAE) for the angle and center point distance of the C-plane, along with the Dice coefficient, MAE, and intra-class correlation coefficient (ICC) for HA, and included the time consumption. The MAE of the C-plane of ASD was 4.81 ± 2.47° with 1.92 ± 1.54 mm. AI-LH achieved a mean Dice coefficient of 0.93 for LH segmentation. The MAE on HA of ASD (1.44 ± 1.12 mm²) was lower than that of IESD (1.63 ± 1.58 mm²). The ICC on HA of ASD (0.964) was higher than that of IESD (0.949). The average time costs of AI-LH and manual measurement were 2.00 ± 0.22 s and 59.60 ± 2.63 s (t = 18.87, p &lt; 0.01), respectively. AI-LH is accurate, reliable, and robust in the localization and measurement of LH dimensions, which can shorten the time cost, simplify the operation process, and have good value in clinical applications.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>38845332</pmid><doi>10.1016/j.ultrasmedbio.2024.05.005</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-5629
ispartof Ultrasound in medicine & biology, 2024-09, Vol.50 (9), p.1329-1338
issn 0301-5629
1879-291X
1879-291X
language eng
recordid cdi_proquest_miscellaneous_3065985357
source Elsevier ScienceDirect Journals
subjects Deep learning
Levator hiatus
Pelvic floor ultrasound
Pelvic organ prolapse
title Fully Automated Localization and Measurement of Levator Hiatus Dimensions Using 3-D Pelvic Floor Ultrasound
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Localization%20and%20Measurement%20of%20Levator%20Hiatus%20Dimensions%20Using%203-D%20Pelvic%20Floor%20Ultrasound&rft.jtitle=Ultrasound%20in%20medicine%20&%20biology&rft.au=Guo,%20Zhijie&rft.date=2024-09-01&rft.volume=50&rft.issue=9&rft.spage=1329&rft.epage=1338&rft.pages=1329-1338&rft.issn=0301-5629&rft.eissn=1879-291X&rft_id=info:doi/10.1016/j.ultrasmedbio.2024.05.005&rft_dat=%3Cproquest_cross%3E3065985357%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065985357&rft_id=info:pmid/38845332&rft_els_id=S0301562924002102&rfr_iscdi=true