A robust regression model for bounded count health data
Bounded count response data arise naturally in health applications. In general, the well-known beta-binomial regression model form the basis for analyzing this data, specially when we have overdispersed data. Little attention, however, has been given to the literature on the possibility of having ex...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2024-08, Vol.33 (8), p.1392-1411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1411 |
---|---|
container_issue | 8 |
container_start_page | 1392 |
container_title | Statistical methods in medical research |
container_volume | 33 |
creator | Bayes, Cristian L Bazán, Jorge Luis Valdivieso, Luis |
description | Bounded count response data arise naturally in health applications. In general, the well-known beta-binomial regression model form the basis for analyzing this data, specially when we have overdispersed data. Little attention, however, has been given to the literature on the possibility of having extreme observations and overdispersed data. We propose in this work an extension of the beta-binomial regression model, named the beta-2-binomial regression model, which provides a rather flexible approach for fitting a regression model with a wide spectrum of bounded count response data sets under the presence of overdispersion, outliers, or excess of extreme observations. This distribution possesses more skewness and kurtosis than the beta-binomial model but preserves the same mean and variance form of the beta-binomial model. Additional properties of the beta-2-binomial distribution are derived including its behavior on the limits of its parametric space. A penalized maximum likelihood approach is considered to estimate parameters of this model and a residual analysis is included to assess departures from model assumptions as well as to detect outlier observations. Simulation studies, considering the robustness to outliers, are presented confirming that the beta-2-binomial regression model is a better robust alternative, in comparison with the binomial and beta-binomial regression models. We also found that the beta-2-binomial regression model outperformed the binomial and beta-binomial regression models in our applications of predicting liver cancer development in mice and the number of inappropriate days a patient spent in a hospital. |
doi_str_mv | 10.1177/09622802241259178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065980540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09622802241259178</sage_id><sourcerecordid>3065980540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-5965160378194f2da70be65f85fe8e39d4844880da15420da65383b3cfc9cd0d3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMotlZ_gBsJuHEzevNOlqX4goIbXQ-ZSaYPZpqazCz896a0KiiuzuJ859zLQeiSwC0hSt2BkZRqoJQTKgxR-giNCVeqAMb4MRrv_GIHjNBZSmsAUMDNKRoxrbnioMdITXEM1ZB6HP0i-pRWYYO74HyLmxBxFYaN8w7XWXu89Lbtl9jZ3p6jk8a2yV8cdILeHu5fZ0_F_OXxeTadFzWj0BfCSEEkMKWJ4Q11VkHlpWi0aLz2zDiuOdcanCWC0yxSMM0qVje1qR04NkE3-95tDO-DT33ZrVLt29ZufBhSyUAKo0FwyOj1L3QdhrjJ35WMkAwSyWSmyJ6qY0gp-qbcxlVn40dJoNytWv5ZNWeuDs1D1Xn3nfiaMQO3eyDZhf85-3_jJ5sNfEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3113061636</pqid></control><display><type>article</type><title>A robust regression model for bounded count health data</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete</source><creator>Bayes, Cristian L ; Bazán, Jorge Luis ; Valdivieso, Luis</creator><creatorcontrib>Bayes, Cristian L ; Bazán, Jorge Luis ; Valdivieso, Luis</creatorcontrib><description>Bounded count response data arise naturally in health applications. In general, the well-known beta-binomial regression model form the basis for analyzing this data, specially when we have overdispersed data. Little attention, however, has been given to the literature on the possibility of having extreme observations and overdispersed data. We propose in this work an extension of the beta-binomial regression model, named the beta-2-binomial regression model, which provides a rather flexible approach for fitting a regression model with a wide spectrum of bounded count response data sets under the presence of overdispersion, outliers, or excess of extreme observations. This distribution possesses more skewness and kurtosis than the beta-binomial model but preserves the same mean and variance form of the beta-binomial model. Additional properties of the beta-2-binomial distribution are derived including its behavior on the limits of its parametric space. A penalized maximum likelihood approach is considered to estimate parameters of this model and a residual analysis is included to assess departures from model assumptions as well as to detect outlier observations. Simulation studies, considering the robustness to outliers, are presented confirming that the beta-2-binomial regression model is a better robust alternative, in comparison with the binomial and beta-binomial regression models. We also found that the beta-2-binomial regression model outperformed the binomial and beta-binomial regression models in our applications of predicting liver cancer development in mice and the number of inappropriate days a patient spent in a hospital.</description><identifier>ISSN: 0962-2802</identifier><identifier>ISSN: 1477-0334</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1177/09622802241259178</identifier><identifier>PMID: 38847408</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Animals ; Binomial distribution ; Data analysis ; Health information ; Inappropriateness ; Kurtosis ; Length of stay ; Liver cancer ; Maximum likelihood estimates ; Medical databases ; Model forms ; Outliers (statistics) ; Parameter estimation ; Parameter robustness ; Regression analysis ; Regression models ; Robustness ; Simulation ; Skewness</subject><ispartof>Statistical methods in medical research, 2024-08, Vol.33 (8), p.1392-1411</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-5965160378194f2da70be65f85fe8e39d4844880da15420da65383b3cfc9cd0d3</cites><orcidid>0000-0003-3918-8795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09622802241259178$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09622802241259178$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,30976,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38847408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayes, Cristian L</creatorcontrib><creatorcontrib>Bazán, Jorge Luis</creatorcontrib><creatorcontrib>Valdivieso, Luis</creatorcontrib><title>A robust regression model for bounded count health data</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>Bounded count response data arise naturally in health applications. In general, the well-known beta-binomial regression model form the basis for analyzing this data, specially when we have overdispersed data. Little attention, however, has been given to the literature on the possibility of having extreme observations and overdispersed data. We propose in this work an extension of the beta-binomial regression model, named the beta-2-binomial regression model, which provides a rather flexible approach for fitting a regression model with a wide spectrum of bounded count response data sets under the presence of overdispersion, outliers, or excess of extreme observations. This distribution possesses more skewness and kurtosis than the beta-binomial model but preserves the same mean and variance form of the beta-binomial model. Additional properties of the beta-2-binomial distribution are derived including its behavior on the limits of its parametric space. A penalized maximum likelihood approach is considered to estimate parameters of this model and a residual analysis is included to assess departures from model assumptions as well as to detect outlier observations. Simulation studies, considering the robustness to outliers, are presented confirming that the beta-2-binomial regression model is a better robust alternative, in comparison with the binomial and beta-binomial regression models. We also found that the beta-2-binomial regression model outperformed the binomial and beta-binomial regression models in our applications of predicting liver cancer development in mice and the number of inappropriate days a patient spent in a hospital.</description><subject>Animals</subject><subject>Binomial distribution</subject><subject>Data analysis</subject><subject>Health information</subject><subject>Inappropriateness</subject><subject>Kurtosis</subject><subject>Length of stay</subject><subject>Liver cancer</subject><subject>Maximum likelihood estimates</subject><subject>Medical databases</subject><subject>Model forms</subject><subject>Outliers (statistics)</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Robustness</subject><subject>Simulation</subject><subject>Skewness</subject><issn>0962-2802</issn><issn>1477-0334</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><recordid>eNp1kEtLAzEUhYMotlZ_gBsJuHEzevNOlqX4goIbXQ-ZSaYPZpqazCz896a0KiiuzuJ859zLQeiSwC0hSt2BkZRqoJQTKgxR-giNCVeqAMb4MRrv_GIHjNBZSmsAUMDNKRoxrbnioMdITXEM1ZB6HP0i-pRWYYO74HyLmxBxFYaN8w7XWXu89Lbtl9jZ3p6jk8a2yV8cdILeHu5fZ0_F_OXxeTadFzWj0BfCSEEkMKWJ4Q11VkHlpWi0aLz2zDiuOdcanCWC0yxSMM0qVje1qR04NkE3-95tDO-DT33ZrVLt29ZufBhSyUAKo0FwyOj1L3QdhrjJ35WMkAwSyWSmyJ6qY0gp-qbcxlVn40dJoNytWv5ZNWeuDs1D1Xn3nfiaMQO3eyDZhf85-3_jJ5sNfEY</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Bayes, Cristian L</creator><creator>Bazán, Jorge Luis</creator><creator>Valdivieso, Luis</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3918-8795</orcidid></search><sort><creationdate>20240801</creationdate><title>A robust regression model for bounded count health data</title><author>Bayes, Cristian L ; Bazán, Jorge Luis ; Valdivieso, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-5965160378194f2da70be65f85fe8e39d4844880da15420da65383b3cfc9cd0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Binomial distribution</topic><topic>Data analysis</topic><topic>Health information</topic><topic>Inappropriateness</topic><topic>Kurtosis</topic><topic>Length of stay</topic><topic>Liver cancer</topic><topic>Maximum likelihood estimates</topic><topic>Medical databases</topic><topic>Model forms</topic><topic>Outliers (statistics)</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Robustness</topic><topic>Simulation</topic><topic>Skewness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayes, Cristian L</creatorcontrib><creatorcontrib>Bazán, Jorge Luis</creatorcontrib><creatorcontrib>Valdivieso, Luis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayes, Cristian L</au><au>Bazán, Jorge Luis</au><au>Valdivieso, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust regression model for bounded count health data</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>33</volume><issue>8</issue><spage>1392</spage><epage>1411</epage><pages>1392-1411</pages><issn>0962-2802</issn><issn>1477-0334</issn><eissn>1477-0334</eissn><abstract>Bounded count response data arise naturally in health applications. In general, the well-known beta-binomial regression model form the basis for analyzing this data, specially when we have overdispersed data. Little attention, however, has been given to the literature on the possibility of having extreme observations and overdispersed data. We propose in this work an extension of the beta-binomial regression model, named the beta-2-binomial regression model, which provides a rather flexible approach for fitting a regression model with a wide spectrum of bounded count response data sets under the presence of overdispersion, outliers, or excess of extreme observations. This distribution possesses more skewness and kurtosis than the beta-binomial model but preserves the same mean and variance form of the beta-binomial model. Additional properties of the beta-2-binomial distribution are derived including its behavior on the limits of its parametric space. A penalized maximum likelihood approach is considered to estimate parameters of this model and a residual analysis is included to assess departures from model assumptions as well as to detect outlier observations. Simulation studies, considering the robustness to outliers, are presented confirming that the beta-2-binomial regression model is a better robust alternative, in comparison with the binomial and beta-binomial regression models. We also found that the beta-2-binomial regression model outperformed the binomial and beta-binomial regression models in our applications of predicting liver cancer development in mice and the number of inappropriate days a patient spent in a hospital.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>38847408</pmid><doi>10.1177/09622802241259178</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3918-8795</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2024-08, Vol.33 (8), p.1392-1411 |
issn | 0962-2802 1477-0334 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_3065980540 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete |
subjects | Animals Binomial distribution Data analysis Health information Inappropriateness Kurtosis Length of stay Liver cancer Maximum likelihood estimates Medical databases Model forms Outliers (statistics) Parameter estimation Parameter robustness Regression analysis Regression models Robustness Simulation Skewness |
title | A robust regression model for bounded count health data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20regression%20model%20for%20bounded%20count%20health%20data&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Bayes,%20Cristian%20L&rft.date=2024-08-01&rft.volume=33&rft.issue=8&rft.spage=1392&rft.epage=1411&rft.pages=1392-1411&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1177/09622802241259178&rft_dat=%3Cproquest_cross%3E3065980540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3113061636&rft_id=info:pmid/38847408&rft_sage_id=10.1177_09622802241259178&rfr_iscdi=true |