Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management

Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme ( Thymus vulgaris ) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naunyn-Schmiedeberg's archives of pharmacology 2024-11, Vol.397 (11), p.8259-8284
Hauptverfasser: Herrera-Bravo, Jesús, Belén, Lisandra Herrera, Reyes, María Elena, Silva, Victor, Fuentealba, Soledad, Paz, Cristian, Loren, Pía, Salazar, Luis A., Sharifi-Rad, Javad, Calina, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8284
container_issue 11
container_start_page 8259
container_title Naunyn-Schmiedeberg's archives of pharmacology
container_volume 397
creator Herrera-Bravo, Jesús
Belén, Lisandra Herrera
Reyes, María Elena
Silva, Victor
Fuentealba, Soledad
Paz, Cristian
Loren, Pía
Salazar, Luis A.
Sharifi-Rad, Javad
Calina, Daniela
description Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme ( Thymus vulgaris ) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol’s anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol’s impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol’s broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.
doi_str_mv 10.1007/s00210-024-03196-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065980158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121792468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-11e5f6e1b85aec4e868a8cad00ce63d2592c83a333543fe90d56f78c7d42eaa43</originalsourceid><addsrcrecordid>eNp9kc1q3DAURkVpSKZJXqCLIugmi7rVjyXL2YWQtIVANsla3MjXMx5syZXkwuz66NF00hay6Eqge76jKz5C3nP2mTPWfEmMCc4qJuqKSd7qSr4hK15LUfGWi7dkVeam4qI1J-RdSlvGmOZKHZMTaUzdGMlX5NfDZjeFkUKi0G2Xn-AzHTwN3oUxrHeXtAzRLSNEOqHbgB_SlD7RvMEIMy55cHQOGX0eYCz34Ds6x5BmdDnRPsQiy7iOkIfg92IH3mFxgYc1TiV3Ro76EsXzl_OUPN7ePFx_q-7uv36_vrqrnFA6V5yj6jXyJ6MAXY1GGzAOOsYcatkJ1QpnJEgpVS17bFmndN8Y13S1QIBanpKLg7es92PBlO00JIfjCB7DkqxkWrWGcWUK-vEVug1L9GU7K7ngTStqvafEgXLlvylib-c4TBB3ljO778ce-rGlH_u7HytL6MOLenmasPsb-VNIAeQBSGXk1xj_vf0f7TM9a50w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121792468</pqid></control><display><type>article</type><title>Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Herrera-Bravo, Jesús ; Belén, Lisandra Herrera ; Reyes, María Elena ; Silva, Victor ; Fuentealba, Soledad ; Paz, Cristian ; Loren, Pía ; Salazar, Luis A. ; Sharifi-Rad, Javad ; Calina, Daniela</creator><creatorcontrib>Herrera-Bravo, Jesús ; Belén, Lisandra Herrera ; Reyes, María Elena ; Silva, Victor ; Fuentealba, Soledad ; Paz, Cristian ; Loren, Pía ; Salazar, Luis A. ; Sharifi-Rad, Javad ; Calina, Daniela</creatorcontrib><description>Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme ( Thymus vulgaris ) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol’s anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol’s impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol’s broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.</description><identifier>ISSN: 0028-1298</identifier><identifier>ISSN: 1432-1912</identifier><identifier>EISSN: 1432-1912</identifier><identifier>DOI: 10.1007/s00210-024-03196-3</identifier><identifier>PMID: 38847831</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>1-Phosphatidylinositol 3-kinase ; 5-Fluorouracil ; AKT protein ; Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Antineoplastic Agents, Phytogenic - pharmacology ; Antineoplastic Agents, Phytogenic - therapeutic use ; Apoptosis ; Apoptosis - drug effects ; Biomedical and Life Sciences ; Biomedicine ; Cancer therapies ; Cell cycle ; Cell death ; Cell division ; Chemotherapy ; Chemotherapy, Adjuvant - methods ; Clinical trials ; Colorectal carcinoma ; Disease management ; Extracellular signal-regulated kinase ; Humans ; Kinases ; Metastases ; Molecular modelling ; Neoplasms - drug therapy ; Neoplasms - pathology ; Neurosciences ; Pharmacology/Toxicology ; Public health ; Rapamycin ; Review ; Signal Transduction - drug effects ; Thymol ; Thymol - pharmacology ; Thymol - therapeutic use ; TOR protein ; Wnt protein ; β-Catenin</subject><ispartof>Naunyn-Schmiedeberg's archives of pharmacology, 2024-11, Vol.397 (11), p.8259-8284</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-11e5f6e1b85aec4e868a8cad00ce63d2592c83a333543fe90d56f78c7d42eaa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00210-024-03196-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00210-024-03196-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38847831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrera-Bravo, Jesús</creatorcontrib><creatorcontrib>Belén, Lisandra Herrera</creatorcontrib><creatorcontrib>Reyes, María Elena</creatorcontrib><creatorcontrib>Silva, Victor</creatorcontrib><creatorcontrib>Fuentealba, Soledad</creatorcontrib><creatorcontrib>Paz, Cristian</creatorcontrib><creatorcontrib>Loren, Pía</creatorcontrib><creatorcontrib>Salazar, Luis A.</creatorcontrib><creatorcontrib>Sharifi-Rad, Javad</creatorcontrib><creatorcontrib>Calina, Daniela</creatorcontrib><title>Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management</title><title>Naunyn-Schmiedeberg's archives of pharmacology</title><addtitle>Naunyn-Schmiedeberg's Arch Pharmacol</addtitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><description>Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme ( Thymus vulgaris ) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol’s anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol’s impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol’s broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>5-Fluorouracil</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Antineoplastic Agents, Phytogenic - therapeutic use</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Chemotherapy</subject><subject>Chemotherapy, Adjuvant - methods</subject><subject>Clinical trials</subject><subject>Colorectal carcinoma</subject><subject>Disease management</subject><subject>Extracellular signal-regulated kinase</subject><subject>Humans</subject><subject>Kinases</subject><subject>Metastases</subject><subject>Molecular modelling</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Neurosciences</subject><subject>Pharmacology/Toxicology</subject><subject>Public health</subject><subject>Rapamycin</subject><subject>Review</subject><subject>Signal Transduction - drug effects</subject><subject>Thymol</subject><subject>Thymol - pharmacology</subject><subject>Thymol - therapeutic use</subject><subject>TOR protein</subject><subject>Wnt protein</subject><subject>β-Catenin</subject><issn>0028-1298</issn><issn>1432-1912</issn><issn>1432-1912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1q3DAURkVpSKZJXqCLIugmi7rVjyXL2YWQtIVANsla3MjXMx5syZXkwuz66NF00hay6Eqge76jKz5C3nP2mTPWfEmMCc4qJuqKSd7qSr4hK15LUfGWi7dkVeam4qI1J-RdSlvGmOZKHZMTaUzdGMlX5NfDZjeFkUKi0G2Xn-AzHTwN3oUxrHeXtAzRLSNEOqHbgB_SlD7RvMEIMy55cHQOGX0eYCz34Ds6x5BmdDnRPsQiy7iOkIfg92IH3mFxgYc1TiV3Ro76EsXzl_OUPN7ePFx_q-7uv36_vrqrnFA6V5yj6jXyJ6MAXY1GGzAOOsYcatkJ1QpnJEgpVS17bFmndN8Y13S1QIBanpKLg7es92PBlO00JIfjCB7DkqxkWrWGcWUK-vEVug1L9GU7K7ngTStqvafEgXLlvylib-c4TBB3ljO778ce-rGlH_u7HytL6MOLenmasPsb-VNIAeQBSGXk1xj_vf0f7TM9a50w</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Herrera-Bravo, Jesús</creator><creator>Belén, Lisandra Herrera</creator><creator>Reyes, María Elena</creator><creator>Silva, Victor</creator><creator>Fuentealba, Soledad</creator><creator>Paz, Cristian</creator><creator>Loren, Pía</creator><creator>Salazar, Luis A.</creator><creator>Sharifi-Rad, Javad</creator><creator>Calina, Daniela</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20241101</creationdate><title>Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management</title><author>Herrera-Bravo, Jesús ; Belén, Lisandra Herrera ; Reyes, María Elena ; Silva, Victor ; Fuentealba, Soledad ; Paz, Cristian ; Loren, Pía ; Salazar, Luis A. ; Sharifi-Rad, Javad ; Calina, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-11e5f6e1b85aec4e868a8cad00ce63d2592c83a333543fe90d56f78c7d42eaa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>5-Fluorouracil</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Antineoplastic Agents, Phytogenic - therapeutic use</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Chemotherapy</topic><topic>Chemotherapy, Adjuvant - methods</topic><topic>Clinical trials</topic><topic>Colorectal carcinoma</topic><topic>Disease management</topic><topic>Extracellular signal-regulated kinase</topic><topic>Humans</topic><topic>Kinases</topic><topic>Metastases</topic><topic>Molecular modelling</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Neurosciences</topic><topic>Pharmacology/Toxicology</topic><topic>Public health</topic><topic>Rapamycin</topic><topic>Review</topic><topic>Signal Transduction - drug effects</topic><topic>Thymol</topic><topic>Thymol - pharmacology</topic><topic>Thymol - therapeutic use</topic><topic>TOR protein</topic><topic>Wnt protein</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera-Bravo, Jesús</creatorcontrib><creatorcontrib>Belén, Lisandra Herrera</creatorcontrib><creatorcontrib>Reyes, María Elena</creatorcontrib><creatorcontrib>Silva, Victor</creatorcontrib><creatorcontrib>Fuentealba, Soledad</creatorcontrib><creatorcontrib>Paz, Cristian</creatorcontrib><creatorcontrib>Loren, Pía</creatorcontrib><creatorcontrib>Salazar, Luis A.</creatorcontrib><creatorcontrib>Sharifi-Rad, Javad</creatorcontrib><creatorcontrib>Calina, Daniela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera-Bravo, Jesús</au><au>Belén, Lisandra Herrera</au><au>Reyes, María Elena</au><au>Silva, Victor</au><au>Fuentealba, Soledad</au><au>Paz, Cristian</au><au>Loren, Pía</au><au>Salazar, Luis A.</au><au>Sharifi-Rad, Javad</au><au>Calina, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management</atitle><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle><stitle>Naunyn-Schmiedeberg's Arch Pharmacol</stitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>397</volume><issue>11</issue><spage>8259</spage><epage>8284</epage><pages>8259-8284</pages><issn>0028-1298</issn><issn>1432-1912</issn><eissn>1432-1912</eissn><abstract>Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme ( Thymus vulgaris ) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol’s anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol’s impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol’s broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38847831</pmid><doi>10.1007/s00210-024-03196-3</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-1298
ispartof Naunyn-Schmiedeberg's archives of pharmacology, 2024-11, Vol.397 (11), p.8259-8284
issn 0028-1298
1432-1912
1432-1912
language eng
recordid cdi_proquest_miscellaneous_3065980158
source MEDLINE; SpringerNature Journals
subjects 1-Phosphatidylinositol 3-kinase
5-Fluorouracil
AKT protein
Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Antineoplastic Agents, Phytogenic - pharmacology
Antineoplastic Agents, Phytogenic - therapeutic use
Apoptosis
Apoptosis - drug effects
Biomedical and Life Sciences
Biomedicine
Cancer therapies
Cell cycle
Cell death
Cell division
Chemotherapy
Chemotherapy, Adjuvant - methods
Clinical trials
Colorectal carcinoma
Disease management
Extracellular signal-regulated kinase
Humans
Kinases
Metastases
Molecular modelling
Neoplasms - drug therapy
Neoplasms - pathology
Neurosciences
Pharmacology/Toxicology
Public health
Rapamycin
Review
Signal Transduction - drug effects
Thymol
Thymol - pharmacology
Thymol - therapeutic use
TOR protein
Wnt protein
β-Catenin
title Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thymol%20as%20adjuvant%20in%20oncology:%20molecular%20mechanisms,%20therapeutic%20potentials,%20and%20prospects%20for%20integration%20in%20cancer%20management&rft.jtitle=Naunyn-Schmiedeberg's%20archives%20of%20pharmacology&rft.au=Herrera-Bravo,%20Jes%C3%BAs&rft.date=2024-11-01&rft.volume=397&rft.issue=11&rft.spage=8259&rft.epage=8284&rft.pages=8259-8284&rft.issn=0028-1298&rft.eissn=1432-1912&rft_id=info:doi/10.1007/s00210-024-03196-3&rft_dat=%3Cproquest_cross%3E3121792468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121792468&rft_id=info:pmid/38847831&rfr_iscdi=true