Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management
Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme ( Thymus vulgaris ) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges...
Gespeichert in:
Veröffentlicht in: | Naunyn-Schmiedeberg's archives of pharmacology 2024-11, Vol.397 (11), p.8259-8284 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8284 |
---|---|
container_issue | 11 |
container_start_page | 8259 |
container_title | Naunyn-Schmiedeberg's archives of pharmacology |
container_volume | 397 |
creator | Herrera-Bravo, Jesús Belén, Lisandra Herrera Reyes, María Elena Silva, Victor Fuentealba, Soledad Paz, Cristian Loren, Pía Salazar, Luis A. Sharifi-Rad, Javad Calina, Daniela |
description | Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (
Thymus vulgaris
) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol’s anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol’s impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol’s broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols. |
doi_str_mv | 10.1007/s00210-024-03196-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065980158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121792468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-11e5f6e1b85aec4e868a8cad00ce63d2592c83a333543fe90d56f78c7d42eaa43</originalsourceid><addsrcrecordid>eNp9kc1q3DAURkVpSKZJXqCLIugmi7rVjyXL2YWQtIVANsla3MjXMx5syZXkwuz66NF00hay6Eqge76jKz5C3nP2mTPWfEmMCc4qJuqKSd7qSr4hK15LUfGWi7dkVeam4qI1J-RdSlvGmOZKHZMTaUzdGMlX5NfDZjeFkUKi0G2Xn-AzHTwN3oUxrHeXtAzRLSNEOqHbgB_SlD7RvMEIMy55cHQOGX0eYCz34Ds6x5BmdDnRPsQiy7iOkIfg92IH3mFxgYc1TiV3Ro76EsXzl_OUPN7ePFx_q-7uv36_vrqrnFA6V5yj6jXyJ6MAXY1GGzAOOsYcatkJ1QpnJEgpVS17bFmndN8Y13S1QIBanpKLg7es92PBlO00JIfjCB7DkqxkWrWGcWUK-vEVug1L9GU7K7ngTStqvafEgXLlvylib-c4TBB3ljO778ce-rGlH_u7HytL6MOLenmasPsb-VNIAeQBSGXk1xj_vf0f7TM9a50w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121792468</pqid></control><display><type>article</type><title>Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Herrera-Bravo, Jesús ; Belén, Lisandra Herrera ; Reyes, María Elena ; Silva, Victor ; Fuentealba, Soledad ; Paz, Cristian ; Loren, Pía ; Salazar, Luis A. ; Sharifi-Rad, Javad ; Calina, Daniela</creator><creatorcontrib>Herrera-Bravo, Jesús ; Belén, Lisandra Herrera ; Reyes, María Elena ; Silva, Victor ; Fuentealba, Soledad ; Paz, Cristian ; Loren, Pía ; Salazar, Luis A. ; Sharifi-Rad, Javad ; Calina, Daniela</creatorcontrib><description>Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (
Thymus vulgaris
) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol’s anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol’s impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol’s broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.</description><identifier>ISSN: 0028-1298</identifier><identifier>ISSN: 1432-1912</identifier><identifier>EISSN: 1432-1912</identifier><identifier>DOI: 10.1007/s00210-024-03196-3</identifier><identifier>PMID: 38847831</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>1-Phosphatidylinositol 3-kinase ; 5-Fluorouracil ; AKT protein ; Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Antineoplastic Agents, Phytogenic - pharmacology ; Antineoplastic Agents, Phytogenic - therapeutic use ; Apoptosis ; Apoptosis - drug effects ; Biomedical and Life Sciences ; Biomedicine ; Cancer therapies ; Cell cycle ; Cell death ; Cell division ; Chemotherapy ; Chemotherapy, Adjuvant - methods ; Clinical trials ; Colorectal carcinoma ; Disease management ; Extracellular signal-regulated kinase ; Humans ; Kinases ; Metastases ; Molecular modelling ; Neoplasms - drug therapy ; Neoplasms - pathology ; Neurosciences ; Pharmacology/Toxicology ; Public health ; Rapamycin ; Review ; Signal Transduction - drug effects ; Thymol ; Thymol - pharmacology ; Thymol - therapeutic use ; TOR protein ; Wnt protein ; β-Catenin</subject><ispartof>Naunyn-Schmiedeberg's archives of pharmacology, 2024-11, Vol.397 (11), p.8259-8284</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-11e5f6e1b85aec4e868a8cad00ce63d2592c83a333543fe90d56f78c7d42eaa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00210-024-03196-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00210-024-03196-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38847831$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrera-Bravo, Jesús</creatorcontrib><creatorcontrib>Belén, Lisandra Herrera</creatorcontrib><creatorcontrib>Reyes, María Elena</creatorcontrib><creatorcontrib>Silva, Victor</creatorcontrib><creatorcontrib>Fuentealba, Soledad</creatorcontrib><creatorcontrib>Paz, Cristian</creatorcontrib><creatorcontrib>Loren, Pía</creatorcontrib><creatorcontrib>Salazar, Luis A.</creatorcontrib><creatorcontrib>Sharifi-Rad, Javad</creatorcontrib><creatorcontrib>Calina, Daniela</creatorcontrib><title>Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management</title><title>Naunyn-Schmiedeberg's archives of pharmacology</title><addtitle>Naunyn-Schmiedeberg's Arch Pharmacol</addtitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><description>Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (
Thymus vulgaris
) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol’s anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol’s impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol’s broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>5-Fluorouracil</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Antineoplastic Agents, Phytogenic - pharmacology</subject><subject>Antineoplastic Agents, Phytogenic - therapeutic use</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Chemotherapy</subject><subject>Chemotherapy, Adjuvant - methods</subject><subject>Clinical trials</subject><subject>Colorectal carcinoma</subject><subject>Disease management</subject><subject>Extracellular signal-regulated kinase</subject><subject>Humans</subject><subject>Kinases</subject><subject>Metastases</subject><subject>Molecular modelling</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Neurosciences</subject><subject>Pharmacology/Toxicology</subject><subject>Public health</subject><subject>Rapamycin</subject><subject>Review</subject><subject>Signal Transduction - drug effects</subject><subject>Thymol</subject><subject>Thymol - pharmacology</subject><subject>Thymol - therapeutic use</subject><subject>TOR protein</subject><subject>Wnt protein</subject><subject>β-Catenin</subject><issn>0028-1298</issn><issn>1432-1912</issn><issn>1432-1912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1q3DAURkVpSKZJXqCLIugmi7rVjyXL2YWQtIVANsla3MjXMx5syZXkwuz66NF00hay6Eqge76jKz5C3nP2mTPWfEmMCc4qJuqKSd7qSr4hK15LUfGWi7dkVeam4qI1J-RdSlvGmOZKHZMTaUzdGMlX5NfDZjeFkUKi0G2Xn-AzHTwN3oUxrHeXtAzRLSNEOqHbgB_SlD7RvMEIMy55cHQOGX0eYCz34Ds6x5BmdDnRPsQiy7iOkIfg92IH3mFxgYc1TiV3Ro76EsXzl_OUPN7ePFx_q-7uv36_vrqrnFA6V5yj6jXyJ6MAXY1GGzAOOsYcatkJ1QpnJEgpVS17bFmndN8Y13S1QIBanpKLg7es92PBlO00JIfjCB7DkqxkWrWGcWUK-vEVug1L9GU7K7ngTStqvafEgXLlvylib-c4TBB3ljO778ce-rGlH_u7HytL6MOLenmasPsb-VNIAeQBSGXk1xj_vf0f7TM9a50w</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Herrera-Bravo, Jesús</creator><creator>Belén, Lisandra Herrera</creator><creator>Reyes, María Elena</creator><creator>Silva, Victor</creator><creator>Fuentealba, Soledad</creator><creator>Paz, Cristian</creator><creator>Loren, Pía</creator><creator>Salazar, Luis A.</creator><creator>Sharifi-Rad, Javad</creator><creator>Calina, Daniela</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20241101</creationdate><title>Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management</title><author>Herrera-Bravo, Jesús ; Belén, Lisandra Herrera ; Reyes, María Elena ; Silva, Victor ; Fuentealba, Soledad ; Paz, Cristian ; Loren, Pía ; Salazar, Luis A. ; Sharifi-Rad, Javad ; Calina, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-11e5f6e1b85aec4e868a8cad00ce63d2592c83a333543fe90d56f78c7d42eaa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>5-Fluorouracil</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Antineoplastic Agents, Phytogenic - pharmacology</topic><topic>Antineoplastic Agents, Phytogenic - therapeutic use</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Chemotherapy</topic><topic>Chemotherapy, Adjuvant - methods</topic><topic>Clinical trials</topic><topic>Colorectal carcinoma</topic><topic>Disease management</topic><topic>Extracellular signal-regulated kinase</topic><topic>Humans</topic><topic>Kinases</topic><topic>Metastases</topic><topic>Molecular modelling</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Neurosciences</topic><topic>Pharmacology/Toxicology</topic><topic>Public health</topic><topic>Rapamycin</topic><topic>Review</topic><topic>Signal Transduction - drug effects</topic><topic>Thymol</topic><topic>Thymol - pharmacology</topic><topic>Thymol - therapeutic use</topic><topic>TOR protein</topic><topic>Wnt protein</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrera-Bravo, Jesús</creatorcontrib><creatorcontrib>Belén, Lisandra Herrera</creatorcontrib><creatorcontrib>Reyes, María Elena</creatorcontrib><creatorcontrib>Silva, Victor</creatorcontrib><creatorcontrib>Fuentealba, Soledad</creatorcontrib><creatorcontrib>Paz, Cristian</creatorcontrib><creatorcontrib>Loren, Pía</creatorcontrib><creatorcontrib>Salazar, Luis A.</creatorcontrib><creatorcontrib>Sharifi-Rad, Javad</creatorcontrib><creatorcontrib>Calina, Daniela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrera-Bravo, Jesús</au><au>Belén, Lisandra Herrera</au><au>Reyes, María Elena</au><au>Silva, Victor</au><au>Fuentealba, Soledad</au><au>Paz, Cristian</au><au>Loren, Pía</au><au>Salazar, Luis A.</au><au>Sharifi-Rad, Javad</au><au>Calina, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management</atitle><jtitle>Naunyn-Schmiedeberg's archives of pharmacology</jtitle><stitle>Naunyn-Schmiedeberg's Arch Pharmacol</stitle><addtitle>Naunyn Schmiedebergs Arch Pharmacol</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>397</volume><issue>11</issue><spage>8259</spage><epage>8284</epage><pages>8259-8284</pages><issn>0028-1298</issn><issn>1432-1912</issn><eissn>1432-1912</eissn><abstract>Cancer remains a global health challenge, prompting a search for effective treatments with fewer side effects. Thymol, a natural monoterpenoid phenol derived primarily from thyme (
Thymus vulgaris
) and other plants in the Lamiaceae family, is known for its diverse biological activities. It emerges as a promising candidate in cancer prevention and therapy. This study aims to consolidate current research on thymol’s anticancer effects, elucidating its mechanisms and potential to enhance standard chemotherapy, and to identify gaps for future research. A comprehensive review was conducted using databases like PubMed/MedLine, Google Scholar, and ScienceDirect, focusing on studies from the last 6 years. All cancer types were included, assessing thymol’s impact in both cell-based (in vitro) and animal (in vivo) studies. Thymol has been shown to induce programmed cell death (apoptosis), halt the cell division cycle (cell cycle arrest), and inhibit cancer spread (metastasis) through modulation of critical signaling pathways, including phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular signal-regulated kinase (ERK), mechanistic target of rapamycin (mTOR), and Wnt/β-catenin. It also enhances the efficacy of 5-fluorouracil (5-FU) in colorectal cancer treatments. Thymol’s broad-spectrum anticancer activities and non-toxic profile to normal cells underscore its potential as an adjunct in cancer therapy. Further clinical trials are essential to fully understand its therapeutic benefits and integration into existing treatment protocols.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38847831</pmid><doi>10.1007/s00210-024-03196-3</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-1298 |
ispartof | Naunyn-Schmiedeberg's archives of pharmacology, 2024-11, Vol.397 (11), p.8259-8284 |
issn | 0028-1298 1432-1912 1432-1912 |
language | eng |
recordid | cdi_proquest_miscellaneous_3065980158 |
source | MEDLINE; SpringerNature Journals |
subjects | 1-Phosphatidylinositol 3-kinase 5-Fluorouracil AKT protein Animals Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Antineoplastic Agents, Phytogenic - pharmacology Antineoplastic Agents, Phytogenic - therapeutic use Apoptosis Apoptosis - drug effects Biomedical and Life Sciences Biomedicine Cancer therapies Cell cycle Cell death Cell division Chemotherapy Chemotherapy, Adjuvant - methods Clinical trials Colorectal carcinoma Disease management Extracellular signal-regulated kinase Humans Kinases Metastases Molecular modelling Neoplasms - drug therapy Neoplasms - pathology Neurosciences Pharmacology/Toxicology Public health Rapamycin Review Signal Transduction - drug effects Thymol Thymol - pharmacology Thymol - therapeutic use TOR protein Wnt protein β-Catenin |
title | Thymol as adjuvant in oncology: molecular mechanisms, therapeutic potentials, and prospects for integration in cancer management |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thymol%20as%20adjuvant%20in%20oncology:%20molecular%20mechanisms,%20therapeutic%20potentials,%20and%20prospects%20for%20integration%20in%20cancer%20management&rft.jtitle=Naunyn-Schmiedeberg's%20archives%20of%20pharmacology&rft.au=Herrera-Bravo,%20Jes%C3%BAs&rft.date=2024-11-01&rft.volume=397&rft.issue=11&rft.spage=8259&rft.epage=8284&rft.pages=8259-8284&rft.issn=0028-1298&rft.eissn=1432-1912&rft_id=info:doi/10.1007/s00210-024-03196-3&rft_dat=%3Cproquest_cross%3E3121792468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121792468&rft_id=info:pmid/38847831&rfr_iscdi=true |