Evaluation of ChatGPT-Generated Educational Patient Pamphlets for Common Interventional Radiology Procedures

This study aimed to evaluate the accuracy and reliability of educational patient pamphlets created by ChatGPT, a large language model, for common interventional radiology (IR) procedures. Twenty frequently performed IR procedures were selected, and five users were tasked to independently request Cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Academic radiology 2024-11, Vol.31 (11), p.4548-4553
Hauptverfasser: Kooraki, Soheil, Hosseiny, Melina, Jalili, Mohamamd H., Rahsepar, Amir Ali, Imanzadeh, Amir, Kim, Grace Hyun, Hassani, Cameron, Abtin, Fereidoun, Moriarty, John M., Bedayat, Arash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4553
container_issue 11
container_start_page 4548
container_title Academic radiology
container_volume 31
creator Kooraki, Soheil
Hosseiny, Melina
Jalili, Mohamamd H.
Rahsepar, Amir Ali
Imanzadeh, Amir
Kim, Grace Hyun
Hassani, Cameron
Abtin, Fereidoun
Moriarty, John M.
Bedayat, Arash
description This study aimed to evaluate the accuracy and reliability of educational patient pamphlets created by ChatGPT, a large language model, for common interventional radiology (IR) procedures. Twenty frequently performed IR procedures were selected, and five users were tasked to independently request ChatGPT to generate educational patient pamphlets for each procedure using identical commands. Subsequently, two independent radiologists assessed the content, quality, and accuracy of the pamphlets. The review focused on identifying potential errors, inaccuracies, the consistency of pamphlets. In a thorough analysis of the education pamphlets, we identified shortcomings in 30% (30/100) of pamphlets, with a total of 34 specific inaccuracies, including missing information about sedation for the procedure (10/34), inaccuracies related to specific procedural-related complications (8/34). A key-word co-occurrence network showed consistent themes within each group of pamphlets, while a line-by-line comparison at the level of users and across different procedures showed statistically significant inconsistencies (P 
doi_str_mv 10.1016/j.acra.2024.05.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065276698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1076633224003076</els_id><sourcerecordid>3065276698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-68d7d65294b320edb1cbd1f7c27b784878ddb031e47a5ec73ed99d987054a54f3</originalsourceid><addsrcrecordid>eNp9kNFq2zAYhcXoaNK0L9CL4sve2JMsWZJhNyNkWaGwMNJrIUu_FwfbyiQ50Lfps_TJpizZLnd1DvznHPg_hO4JLggm_NO-0MbrosQlK3BVJPmA5kQKmTPM-FXyWPCcU1rO0E0Ie4xJxSW9RjMqJa1ZJedoWB11P-nYuTFzbbbc6bjebPM1jOB1BJut7GT-nHWfbZKBMSYdDrseYsha57OlG4bUfhoj-GM6n7M_tO1c736-vr9tvDNgJw_hFn1sdR_g7qIL9PJ1tV1-y5-_r5-WX55zU1IRcy6tsLwqa9bQEoNtiGksaYUpRSMkSx9a22BKgAldgREUbF3bWgpcMV2xli7Q43n34N2vCUJUQxcM9L0ewU1BUZzWBee1TNHyHDXeheChVQffDdq_KoLVCbPaqxNmdcKscKWSpNLDZX9qBrD_Kn-5psDncwDSl8cOvAomoUsYOg8mKuu6_-3_BhEPkKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065276698</pqid></control><display><type>article</type><title>Evaluation of ChatGPT-Generated Educational Patient Pamphlets for Common Interventional Radiology Procedures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kooraki, Soheil ; Hosseiny, Melina ; Jalili, Mohamamd H. ; Rahsepar, Amir Ali ; Imanzadeh, Amir ; Kim, Grace Hyun ; Hassani, Cameron ; Abtin, Fereidoun ; Moriarty, John M. ; Bedayat, Arash</creator><creatorcontrib>Kooraki, Soheil ; Hosseiny, Melina ; Jalili, Mohamamd H. ; Rahsepar, Amir Ali ; Imanzadeh, Amir ; Kim, Grace Hyun ; Hassani, Cameron ; Abtin, Fereidoun ; Moriarty, John M. ; Bedayat, Arash</creatorcontrib><description>This study aimed to evaluate the accuracy and reliability of educational patient pamphlets created by ChatGPT, a large language model, for common interventional radiology (IR) procedures. Twenty frequently performed IR procedures were selected, and five users were tasked to independently request ChatGPT to generate educational patient pamphlets for each procedure using identical commands. Subsequently, two independent radiologists assessed the content, quality, and accuracy of the pamphlets. The review focused on identifying potential errors, inaccuracies, the consistency of pamphlets. In a thorough analysis of the education pamphlets, we identified shortcomings in 30% (30/100) of pamphlets, with a total of 34 specific inaccuracies, including missing information about sedation for the procedure (10/34), inaccuracies related to specific procedural-related complications (8/34). A key-word co-occurrence network showed consistent themes within each group of pamphlets, while a line-by-line comparison at the level of users and across different procedures showed statistically significant inconsistencies (P &lt; 0.001). ChatGPT-generated education pamphlets demonstrated potential clinical relevance and fairly consistent terminology; however, the pamphlets were not entirely accurate and exhibited some shortcomings and inter-user structural variabilities. To ensure patient safety, future improvements and refinements in large language models are warranted, while maintaining human supervision and expert validation.</description><identifier>ISSN: 1076-6332</identifier><identifier>ISSN: 1878-4046</identifier><identifier>EISSN: 1878-4046</identifier><identifier>DOI: 10.1016/j.acra.2024.05.024</identifier><identifier>PMID: 38839458</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Chat GPT ; Co-occurrence network graph ; Education ; Interventional radiology ; Large language models</subject><ispartof>Academic radiology, 2024-11, Vol.31 (11), p.4548-4553</ispartof><rights>2024 The Association of University Radiologists</rights><rights>Copyright © 2024 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-68d7d65294b320edb1cbd1f7c27b784878ddb031e47a5ec73ed99d987054a54f3</cites><orcidid>0000-0001-8769-0224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.acra.2024.05.024$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38839458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kooraki, Soheil</creatorcontrib><creatorcontrib>Hosseiny, Melina</creatorcontrib><creatorcontrib>Jalili, Mohamamd H.</creatorcontrib><creatorcontrib>Rahsepar, Amir Ali</creatorcontrib><creatorcontrib>Imanzadeh, Amir</creatorcontrib><creatorcontrib>Kim, Grace Hyun</creatorcontrib><creatorcontrib>Hassani, Cameron</creatorcontrib><creatorcontrib>Abtin, Fereidoun</creatorcontrib><creatorcontrib>Moriarty, John M.</creatorcontrib><creatorcontrib>Bedayat, Arash</creatorcontrib><title>Evaluation of ChatGPT-Generated Educational Patient Pamphlets for Common Interventional Radiology Procedures</title><title>Academic radiology</title><addtitle>Acad Radiol</addtitle><description>This study aimed to evaluate the accuracy and reliability of educational patient pamphlets created by ChatGPT, a large language model, for common interventional radiology (IR) procedures. Twenty frequently performed IR procedures were selected, and five users were tasked to independently request ChatGPT to generate educational patient pamphlets for each procedure using identical commands. Subsequently, two independent radiologists assessed the content, quality, and accuracy of the pamphlets. The review focused on identifying potential errors, inaccuracies, the consistency of pamphlets. In a thorough analysis of the education pamphlets, we identified shortcomings in 30% (30/100) of pamphlets, with a total of 34 specific inaccuracies, including missing information about sedation for the procedure (10/34), inaccuracies related to specific procedural-related complications (8/34). A key-word co-occurrence network showed consistent themes within each group of pamphlets, while a line-by-line comparison at the level of users and across different procedures showed statistically significant inconsistencies (P &lt; 0.001). ChatGPT-generated education pamphlets demonstrated potential clinical relevance and fairly consistent terminology; however, the pamphlets were not entirely accurate and exhibited some shortcomings and inter-user structural variabilities. To ensure patient safety, future improvements and refinements in large language models are warranted, while maintaining human supervision and expert validation.</description><subject>Chat GPT</subject><subject>Co-occurrence network graph</subject><subject>Education</subject><subject>Interventional radiology</subject><subject>Large language models</subject><issn>1076-6332</issn><issn>1878-4046</issn><issn>1878-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kNFq2zAYhcXoaNK0L9CL4sve2JMsWZJhNyNkWaGwMNJrIUu_FwfbyiQ50Lfps_TJpizZLnd1DvznHPg_hO4JLggm_NO-0MbrosQlK3BVJPmA5kQKmTPM-FXyWPCcU1rO0E0Ie4xJxSW9RjMqJa1ZJedoWB11P-nYuTFzbbbc6bjebPM1jOB1BJut7GT-nHWfbZKBMSYdDrseYsha57OlG4bUfhoj-GM6n7M_tO1c736-vr9tvDNgJw_hFn1sdR_g7qIL9PJ1tV1-y5-_r5-WX55zU1IRcy6tsLwqa9bQEoNtiGksaYUpRSMkSx9a22BKgAldgREUbF3bWgpcMV2xli7Q43n34N2vCUJUQxcM9L0ewU1BUZzWBee1TNHyHDXeheChVQffDdq_KoLVCbPaqxNmdcKscKWSpNLDZX9qBrD_Kn-5psDncwDSl8cOvAomoUsYOg8mKuu6_-3_BhEPkKc</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Kooraki, Soheil</creator><creator>Hosseiny, Melina</creator><creator>Jalili, Mohamamd H.</creator><creator>Rahsepar, Amir Ali</creator><creator>Imanzadeh, Amir</creator><creator>Kim, Grace Hyun</creator><creator>Hassani, Cameron</creator><creator>Abtin, Fereidoun</creator><creator>Moriarty, John M.</creator><creator>Bedayat, Arash</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8769-0224</orcidid></search><sort><creationdate>20241101</creationdate><title>Evaluation of ChatGPT-Generated Educational Patient Pamphlets for Common Interventional Radiology Procedures</title><author>Kooraki, Soheil ; Hosseiny, Melina ; Jalili, Mohamamd H. ; Rahsepar, Amir Ali ; Imanzadeh, Amir ; Kim, Grace Hyun ; Hassani, Cameron ; Abtin, Fereidoun ; Moriarty, John M. ; Bedayat, Arash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-68d7d65294b320edb1cbd1f7c27b784878ddb031e47a5ec73ed99d987054a54f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chat GPT</topic><topic>Co-occurrence network graph</topic><topic>Education</topic><topic>Interventional radiology</topic><topic>Large language models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kooraki, Soheil</creatorcontrib><creatorcontrib>Hosseiny, Melina</creatorcontrib><creatorcontrib>Jalili, Mohamamd H.</creatorcontrib><creatorcontrib>Rahsepar, Amir Ali</creatorcontrib><creatorcontrib>Imanzadeh, Amir</creatorcontrib><creatorcontrib>Kim, Grace Hyun</creatorcontrib><creatorcontrib>Hassani, Cameron</creatorcontrib><creatorcontrib>Abtin, Fereidoun</creatorcontrib><creatorcontrib>Moriarty, John M.</creatorcontrib><creatorcontrib>Bedayat, Arash</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Academic radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kooraki, Soheil</au><au>Hosseiny, Melina</au><au>Jalili, Mohamamd H.</au><au>Rahsepar, Amir Ali</au><au>Imanzadeh, Amir</au><au>Kim, Grace Hyun</au><au>Hassani, Cameron</au><au>Abtin, Fereidoun</au><au>Moriarty, John M.</au><au>Bedayat, Arash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of ChatGPT-Generated Educational Patient Pamphlets for Common Interventional Radiology Procedures</atitle><jtitle>Academic radiology</jtitle><addtitle>Acad Radiol</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>31</volume><issue>11</issue><spage>4548</spage><epage>4553</epage><pages>4548-4553</pages><issn>1076-6332</issn><issn>1878-4046</issn><eissn>1878-4046</eissn><abstract>This study aimed to evaluate the accuracy and reliability of educational patient pamphlets created by ChatGPT, a large language model, for common interventional radiology (IR) procedures. Twenty frequently performed IR procedures were selected, and five users were tasked to independently request ChatGPT to generate educational patient pamphlets for each procedure using identical commands. Subsequently, two independent radiologists assessed the content, quality, and accuracy of the pamphlets. The review focused on identifying potential errors, inaccuracies, the consistency of pamphlets. In a thorough analysis of the education pamphlets, we identified shortcomings in 30% (30/100) of pamphlets, with a total of 34 specific inaccuracies, including missing information about sedation for the procedure (10/34), inaccuracies related to specific procedural-related complications (8/34). A key-word co-occurrence network showed consistent themes within each group of pamphlets, while a line-by-line comparison at the level of users and across different procedures showed statistically significant inconsistencies (P &lt; 0.001). ChatGPT-generated education pamphlets demonstrated potential clinical relevance and fairly consistent terminology; however, the pamphlets were not entirely accurate and exhibited some shortcomings and inter-user structural variabilities. To ensure patient safety, future improvements and refinements in large language models are warranted, while maintaining human supervision and expert validation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38839458</pmid><doi>10.1016/j.acra.2024.05.024</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8769-0224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-6332
ispartof Academic radiology, 2024-11, Vol.31 (11), p.4548-4553
issn 1076-6332
1878-4046
1878-4046
language eng
recordid cdi_proquest_miscellaneous_3065276698
source ScienceDirect Journals (5 years ago - present)
subjects Chat GPT
Co-occurrence network graph
Education
Interventional radiology
Large language models
title Evaluation of ChatGPT-Generated Educational Patient Pamphlets for Common Interventional Radiology Procedures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A46%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20ChatGPT-Generated%20Educational%20Patient%20Pamphlets%20for%20Common%20Interventional%20Radiology%C2%A0Procedures&rft.jtitle=Academic%20radiology&rft.au=Kooraki,%20Soheil&rft.date=2024-11-01&rft.volume=31&rft.issue=11&rft.spage=4548&rft.epage=4553&rft.pages=4548-4553&rft.issn=1076-6332&rft.eissn=1878-4046&rft_id=info:doi/10.1016/j.acra.2024.05.024&rft_dat=%3Cproquest_cross%3E3065276698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065276698&rft_id=info:pmid/38839458&rft_els_id=S1076633224003076&rfr_iscdi=true