Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range
In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-08, Vol.36 (32), p.e2405473-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | e2405473 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Liu, Tingting Lei, Chengjun Wang, Huijian Li, Jinye Jiang, Pengjie He, Xin Liang, Xiao |
description | In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co‐solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H‐bonds of water by global weak PEG–H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close‐to‐unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to −40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs.
The first four‐electron zinc–iodine batteries with wide‐temperature range (−40 °C to 40 °C) are successfully fabricated using polyethylene glycol (PEG 200) as a co‐solvent in 2 m ZnCl2 aqueous solution. The hybrid electrolyte substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation, and smoothening Zn deposition. |
doi_str_mv | 10.1002/adma.202405473 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065275830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090215714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3033-a73175b54bdfb2b1d866b035b0643d29d0187aff3f47abceca37ae69fc9157703</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZprzkWQS-5eDuyLMs6br6aQEogpAR6MbI1TpzY0kayKaaX_IRA_2F-SbXdbQq55DQwPPMwLy8huwzmDCD9ok2v5ymkGYhM8jdkxkTKkgyUeEtmoLhIVJ4VW2Q7hFsAUDnk78kWLwouC85n5NfifkQ3BnrUYT14100D0qt2uKFXqO_oyWS8u0ZL9501gTbO02M3-qeHxw1v6Y_W1k8Pv0-daS3SfT0M6Cd6vkSvBwy0tVRHoUF6if3f5eiRXmh7jR_Iu0Z3AT9u5g75fnx0eXCSnJ1_PT1YnCU1B84TLTmTohJZZZoqrZgp8rwCLirIM25SZYAVUjcNbzKpqxprzaXGXDW1YkJK4Dtkb-1dehfThqHs21Bj12m7il5yyEUqRcFX6OcX6G2Ma-N3kVKQRiHLIjVfU7V3IXhsyqVve-2nkkG5qqVc1VI-1xIPPm20Y9Wjecb_9RABtQZ-th1Or-jKxeG3xX_5H82Hm3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090215714</pqid></control><display><type>article</type><title>Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range</title><source>Access via Wiley Online Library</source><creator>Liu, Tingting ; Lei, Chengjun ; Wang, Huijian ; Li, Jinye ; Jiang, Pengjie ; He, Xin ; Liang, Xiao</creator><creatorcontrib>Liu, Tingting ; Lei, Chengjun ; Wang, Huijian ; Li, Jinye ; Jiang, Pengjie ; He, Xin ; Liang, Xiao</creatorcontrib><description>In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co‐solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H‐bonds of water by global weak PEG–H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close‐to‐unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to −40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs.
The first four‐electron zinc–iodine batteries with wide‐temperature range (−40 °C to 40 °C) are successfully fabricated using polyethylene glycol (PEG 200) as a co‐solvent in 2 m ZnCl2 aqueous solution. The hybrid electrolyte substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation, and smoothening Zn deposition.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202405473</identifier><identifier>PMID: 38837833</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Aqueous solutions ; Bonding strength ; Covalent bonds ; Electrolytes ; Energy storage ; Hydrogen bonds ; Hydrolysis ; ICl hydrolysis ; Iodine ; Polyethylene glycol ; Storage systems ; successive I−/I2/I+ redox couples ; Synergistic effect ; Water activity ; weak hydrogen bonds ; wide temperature range ; Zinc chloride ; zinc–iodine battery</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405473-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3033-a73175b54bdfb2b1d866b035b0643d29d0187aff3f47abceca37ae69fc9157703</citedby><cites>FETCH-LOGICAL-c3033-a73175b54bdfb2b1d866b035b0643d29d0187aff3f47abceca37ae69fc9157703</cites><orcidid>0000-0003-4074-340X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202405473$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202405473$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38837833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Lei, Chengjun</creatorcontrib><creatorcontrib>Wang, Huijian</creatorcontrib><creatorcontrib>Li, Jinye</creatorcontrib><creatorcontrib>Jiang, Pengjie</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><title>Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co‐solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H‐bonds of water by global weak PEG–H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close‐to‐unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to −40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs.
The first four‐electron zinc–iodine batteries with wide‐temperature range (−40 °C to 40 °C) are successfully fabricated using polyethylene glycol (PEG 200) as a co‐solvent in 2 m ZnCl2 aqueous solution. The hybrid electrolyte substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation, and smoothening Zn deposition.</description><subject>Aqueous electrolytes</subject><subject>Aqueous solutions</subject><subject>Bonding strength</subject><subject>Covalent bonds</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Hydrogen bonds</subject><subject>Hydrolysis</subject><subject>ICl hydrolysis</subject><subject>Iodine</subject><subject>Polyethylene glycol</subject><subject>Storage systems</subject><subject>successive I−/I2/I+ redox couples</subject><subject>Synergistic effect</subject><subject>Water activity</subject><subject>weak hydrogen bonds</subject><subject>wide temperature range</subject><subject>Zinc chloride</subject><subject>zinc–iodine battery</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAQhkVpaTZprzkWQS-5eDuyLMs6br6aQEogpAR6MbI1TpzY0kayKaaX_IRA_2F-SbXdbQq55DQwPPMwLy8huwzmDCD9ok2v5ymkGYhM8jdkxkTKkgyUeEtmoLhIVJ4VW2Q7hFsAUDnk78kWLwouC85n5NfifkQ3BnrUYT14100D0qt2uKFXqO_oyWS8u0ZL9501gTbO02M3-qeHxw1v6Y_W1k8Pv0-daS3SfT0M6Cd6vkSvBwy0tVRHoUF6if3f5eiRXmh7jR_Iu0Z3AT9u5g75fnx0eXCSnJ1_PT1YnCU1B84TLTmTohJZZZoqrZgp8rwCLirIM25SZYAVUjcNbzKpqxprzaXGXDW1YkJK4Dtkb-1dehfThqHs21Bj12m7il5yyEUqRcFX6OcX6G2Ma-N3kVKQRiHLIjVfU7V3IXhsyqVve-2nkkG5qqVc1VI-1xIPPm20Y9Wjecb_9RABtQZ-th1Or-jKxeG3xX_5H82Hm3g</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liu, Tingting</creator><creator>Lei, Chengjun</creator><creator>Wang, Huijian</creator><creator>Li, Jinye</creator><creator>Jiang, Pengjie</creator><creator>He, Xin</creator><creator>Liang, Xiao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4074-340X</orcidid></search><sort><creationdate>20240801</creationdate><title>Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range</title><author>Liu, Tingting ; Lei, Chengjun ; Wang, Huijian ; Li, Jinye ; Jiang, Pengjie ; He, Xin ; Liang, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3033-a73175b54bdfb2b1d866b035b0643d29d0187aff3f47abceca37ae69fc9157703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Aqueous solutions</topic><topic>Bonding strength</topic><topic>Covalent bonds</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Hydrogen bonds</topic><topic>Hydrolysis</topic><topic>ICl hydrolysis</topic><topic>Iodine</topic><topic>Polyethylene glycol</topic><topic>Storage systems</topic><topic>successive I−/I2/I+ redox couples</topic><topic>Synergistic effect</topic><topic>Water activity</topic><topic>weak hydrogen bonds</topic><topic>wide temperature range</topic><topic>Zinc chloride</topic><topic>zinc–iodine battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Lei, Chengjun</creatorcontrib><creatorcontrib>Wang, Huijian</creatorcontrib><creatorcontrib>Li, Jinye</creatorcontrib><creatorcontrib>Jiang, Pengjie</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tingting</au><au>Lei, Chengjun</au><au>Wang, Huijian</au><au>Li, Jinye</au><au>Jiang, Pengjie</au><au>He, Xin</au><au>Liang, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>32</issue><spage>e2405473</spage><epage>n/a</epage><pages>e2405473-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co‐solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H‐bonds of water by global weak PEG–H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close‐to‐unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to −40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs.
The first four‐electron zinc–iodine batteries with wide‐temperature range (−40 °C to 40 °C) are successfully fabricated using polyethylene glycol (PEG 200) as a co‐solvent in 2 m ZnCl2 aqueous solution. The hybrid electrolyte substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation, and smoothening Zn deposition.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38837833</pmid><doi>10.1002/adma.202405473</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4074-340X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405473-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3065275830 |
source | Access via Wiley Online Library |
subjects | Aqueous electrolytes Aqueous solutions Bonding strength Covalent bonds Electrolytes Energy storage Hydrogen bonds Hydrolysis ICl hydrolysis Iodine Polyethylene glycol Storage systems successive I−/I2/I+ redox couples Synergistic effect Water activity weak hydrogen bonds wide temperature range Zinc chloride zinc–iodine battery |
title | Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20Electrolyte%20With%20Weak%20Hydrogen%20Bonds%20for%20Four%E2%80%90Electron%20Zinc%E2%80%93Iodine%20Battery%20Operates%20in%20a%20Wide%20Temperature%20Range&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Tingting&rft.date=2024-08-01&rft.volume=36&rft.issue=32&rft.spage=e2405473&rft.epage=n/a&rft.pages=e2405473-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202405473&rft_dat=%3Cproquest_cross%3E3090215714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090215714&rft_id=info:pmid/38837833&rfr_iscdi=true |