Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range

In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (32), p.e2405473-n/a
Hauptverfasser: Liu, Tingting, Lei, Chengjun, Wang, Huijian, Li, Jinye, Jiang, Pengjie, He, Xin, Liang, Xiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page e2405473
container_title Advanced materials (Weinheim)
container_volume 36
creator Liu, Tingting
Lei, Chengjun
Wang, Huijian
Li, Jinye
Jiang, Pengjie
He, Xin
Liang, Xiao
description In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co‐solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H‐bonds of water by global weak PEG–H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close‐to‐unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to −40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs. The first four‐electron zinc–iodine batteries with wide‐temperature range (−40  °C to 40  °C) are successfully fabricated using polyethylene glycol (PEG 200) as a co‐solvent in 2 m ZnCl2 aqueous solution. The hybrid electrolyte substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation, and smoothening Zn deposition.
doi_str_mv 10.1002/adma.202405473
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065275830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090215714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3033-a73175b54bdfb2b1d866b035b0643d29d0187aff3f47abceca37ae69fc9157703</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhkVpaTZprzkWQS-5eDuyLMs6br6aQEogpAR6MbI1TpzY0kayKaaX_IRA_2F-SbXdbQq55DQwPPMwLy8huwzmDCD9ok2v5ymkGYhM8jdkxkTKkgyUeEtmoLhIVJ4VW2Q7hFsAUDnk78kWLwouC85n5NfifkQ3BnrUYT14100D0qt2uKFXqO_oyWS8u0ZL9501gTbO02M3-qeHxw1v6Y_W1k8Pv0-daS3SfT0M6Cd6vkSvBwy0tVRHoUF6if3f5eiRXmh7jR_Iu0Z3AT9u5g75fnx0eXCSnJ1_PT1YnCU1B84TLTmTohJZZZoqrZgp8rwCLirIM25SZYAVUjcNbzKpqxprzaXGXDW1YkJK4Dtkb-1dehfThqHs21Bj12m7il5yyEUqRcFX6OcX6G2Ma-N3kVKQRiHLIjVfU7V3IXhsyqVve-2nkkG5qqVc1VI-1xIPPm20Y9Wjecb_9RABtQZ-th1Or-jKxeG3xX_5H82Hm3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090215714</pqid></control><display><type>article</type><title>Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range</title><source>Access via Wiley Online Library</source><creator>Liu, Tingting ; Lei, Chengjun ; Wang, Huijian ; Li, Jinye ; Jiang, Pengjie ; He, Xin ; Liang, Xiao</creator><creatorcontrib>Liu, Tingting ; Lei, Chengjun ; Wang, Huijian ; Li, Jinye ; Jiang, Pengjie ; He, Xin ; Liang, Xiao</creatorcontrib><description>In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co‐solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H‐bonds of water by global weak PEG–H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close‐to‐unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to −40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs. The first four‐electron zinc–iodine batteries with wide‐temperature range (−40  °C to 40  °C) are successfully fabricated using polyethylene glycol (PEG 200) as a co‐solvent in 2 m ZnCl2 aqueous solution. The hybrid electrolyte substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation, and smoothening Zn deposition.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202405473</identifier><identifier>PMID: 38837833</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Aqueous solutions ; Bonding strength ; Covalent bonds ; Electrolytes ; Energy storage ; Hydrogen bonds ; Hydrolysis ; ICl hydrolysis ; Iodine ; Polyethylene glycol ; Storage systems ; successive I−/I2/I+ redox couples ; Synergistic effect ; Water activity ; weak hydrogen bonds ; wide temperature range ; Zinc chloride ; zinc–iodine battery</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405473-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3033-a73175b54bdfb2b1d866b035b0643d29d0187aff3f47abceca37ae69fc9157703</citedby><cites>FETCH-LOGICAL-c3033-a73175b54bdfb2b1d866b035b0643d29d0187aff3f47abceca37ae69fc9157703</cites><orcidid>0000-0003-4074-340X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202405473$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202405473$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38837833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Lei, Chengjun</creatorcontrib><creatorcontrib>Wang, Huijian</creatorcontrib><creatorcontrib>Li, Jinye</creatorcontrib><creatorcontrib>Jiang, Pengjie</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><title>Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co‐solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H‐bonds of water by global weak PEG–H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close‐to‐unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to −40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs. The first four‐electron zinc–iodine batteries with wide‐temperature range (−40  °C to 40  °C) are successfully fabricated using polyethylene glycol (PEG 200) as a co‐solvent in 2 m ZnCl2 aqueous solution. The hybrid electrolyte substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation, and smoothening Zn deposition.</description><subject>Aqueous electrolytes</subject><subject>Aqueous solutions</subject><subject>Bonding strength</subject><subject>Covalent bonds</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Hydrogen bonds</subject><subject>Hydrolysis</subject><subject>ICl hydrolysis</subject><subject>Iodine</subject><subject>Polyethylene glycol</subject><subject>Storage systems</subject><subject>successive I−/I2/I+ redox couples</subject><subject>Synergistic effect</subject><subject>Water activity</subject><subject>weak hydrogen bonds</subject><subject>wide temperature range</subject><subject>Zinc chloride</subject><subject>zinc–iodine battery</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r3DAQhkVpaTZprzkWQS-5eDuyLMs6br6aQEogpAR6MbI1TpzY0kayKaaX_IRA_2F-SbXdbQq55DQwPPMwLy8huwzmDCD9ok2v5ymkGYhM8jdkxkTKkgyUeEtmoLhIVJ4VW2Q7hFsAUDnk78kWLwouC85n5NfifkQ3BnrUYT14100D0qt2uKFXqO_oyWS8u0ZL9501gTbO02M3-qeHxw1v6Y_W1k8Pv0-daS3SfT0M6Cd6vkSvBwy0tVRHoUF6if3f5eiRXmh7jR_Iu0Z3AT9u5g75fnx0eXCSnJ1_PT1YnCU1B84TLTmTohJZZZoqrZgp8rwCLirIM25SZYAVUjcNbzKpqxprzaXGXDW1YkJK4Dtkb-1dehfThqHs21Bj12m7il5yyEUqRcFX6OcX6G2Ma-N3kVKQRiHLIjVfU7V3IXhsyqVve-2nkkG5qqVc1VI-1xIPPm20Y9Wjecb_9RABtQZ-th1Or-jKxeG3xX_5H82Hm3g</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liu, Tingting</creator><creator>Lei, Chengjun</creator><creator>Wang, Huijian</creator><creator>Li, Jinye</creator><creator>Jiang, Pengjie</creator><creator>He, Xin</creator><creator>Liang, Xiao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4074-340X</orcidid></search><sort><creationdate>20240801</creationdate><title>Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range</title><author>Liu, Tingting ; Lei, Chengjun ; Wang, Huijian ; Li, Jinye ; Jiang, Pengjie ; He, Xin ; Liang, Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3033-a73175b54bdfb2b1d866b035b0643d29d0187aff3f47abceca37ae69fc9157703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous electrolytes</topic><topic>Aqueous solutions</topic><topic>Bonding strength</topic><topic>Covalent bonds</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Hydrogen bonds</topic><topic>Hydrolysis</topic><topic>ICl hydrolysis</topic><topic>Iodine</topic><topic>Polyethylene glycol</topic><topic>Storage systems</topic><topic>successive I−/I2/I+ redox couples</topic><topic>Synergistic effect</topic><topic>Water activity</topic><topic>weak hydrogen bonds</topic><topic>wide temperature range</topic><topic>Zinc chloride</topic><topic>zinc–iodine battery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Lei, Chengjun</creatorcontrib><creatorcontrib>Wang, Huijian</creatorcontrib><creatorcontrib>Li, Jinye</creatorcontrib><creatorcontrib>Jiang, Pengjie</creatorcontrib><creatorcontrib>He, Xin</creatorcontrib><creatorcontrib>Liang, Xiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Tingting</au><au>Lei, Chengjun</au><au>Wang, Huijian</au><au>Li, Jinye</au><au>Jiang, Pengjie</au><au>He, Xin</au><au>Liang, Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>32</issue><spage>e2405473</spage><epage>n/a</epage><pages>e2405473-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>In the pursuit of high‐performance energy storage systems, four‐electron zinc–iodine aqueous batteries (4eZIBs) with successive I−/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co‐solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H‐bonds of water by global weak PEG–H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close‐to‐unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to −40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs. The first four‐electron zinc–iodine batteries with wide‐temperature range (−40  °C to 40  °C) are successfully fabricated using polyethylene glycol (PEG 200) as a co‐solvent in 2 m ZnCl2 aqueous solution. The hybrid electrolyte substantially reduces water activity to restrain the I+ hydrolysis, facilitating I−/I2/I+ redox kinetics, mitigating I3− formation, and smoothening Zn deposition.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38837833</pmid><doi>10.1002/adma.202405473</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4074-340X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405473-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3065275830
source Access via Wiley Online Library
subjects Aqueous electrolytes
Aqueous solutions
Bonding strength
Covalent bonds
Electrolytes
Energy storage
Hydrogen bonds
Hydrolysis
ICl hydrolysis
Iodine
Polyethylene glycol
Storage systems
successive I−/I2/I+ redox couples
Synergistic effect
Water activity
weak hydrogen bonds
wide temperature range
Zinc chloride
zinc–iodine battery
title Aqueous Electrolyte With Weak Hydrogen Bonds for Four‐Electron Zinc–Iodine Battery Operates in a Wide Temperature Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aqueous%20Electrolyte%20With%20Weak%20Hydrogen%20Bonds%20for%20Four%E2%80%90Electron%20Zinc%E2%80%93Iodine%20Battery%20Operates%20in%20a%20Wide%20Temperature%20Range&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Tingting&rft.date=2024-08-01&rft.volume=36&rft.issue=32&rft.spage=e2405473&rft.epage=n/a&rft.pages=e2405473-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202405473&rft_dat=%3Cproquest_cross%3E3090215714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090215714&rft_id=info:pmid/38837833&rfr_iscdi=true