ABHD5 regulates midgut-specific lipid homeostasis in Bombyx mori

Lipids are an important energy source and are utilized as substrates for various physiological processes in insects. Comparative gene identification 58 (CGI-58), also known as α/β hydrolase domain-containing 5 (ABHD5), is a highly conserved and multifunctional gene involved in regulating lipid metab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insect science 2024-06
Hauptverfasser: Xing, Zhiping, Zhang, Yuting, Kang, Hongxia, Dong, Hui, Zhu, Dalin, Liu, Yutong, Sun, Chenxin, Guo, Peilin, Hu, Bo, Tan, Anjiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipids are an important energy source and are utilized as substrates for various physiological processes in insects. Comparative gene identification 58 (CGI-58), also known as α/β hydrolase domain-containing 5 (ABHD5), is a highly conserved and multifunctional gene involved in regulating lipid metabolism and cellular energy balance in many organisms. However, the biological functions of ABHD5 in insects are poorly understood. In the current study, we describe the identification and characterization of the ABHD5 gene in the lepidopteran model insect, Bombyx mori. The tissue expression profile investigated using quantitative reverse transcription polymerase chain reaction (RT-qPCR) reveals that BmABHD5 is widely expressed in all tissues, with particularly high levels found in the midgut and testis. A binary transgenic CRISPR/Cas9 system was employed to conduct a functional analysis of BmABHD5, with the mutation of BmABHD5 leading to the dysregulation of lipid metabolism and excessive lipid accumulation in the larval midgut. Histological and physiological analysis further reveals a significant accumulation of lipid droplets in the midgut of mutant larvae. RNA-seq and RT-qPCR analysis showed that genes related to metabolic pathways were significantly affected by the absence of BmABHD5. Altogether, our data prove that BmABHD5 plays an important role in regulating tissue-specific lipid metabolism in the silkworm midgut.
ISSN:1744-7917
DOI:10.1111/1744-7917.13386