Needle‐Like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics

Implantable bioelectronics has attracted significant attention in electroceuticals and clinical medicine for precise diagnosis and efficient treatment of target diseases. However, conventional rigid implantable devices face challenges such as poor tissue‐device interface and unavoidable tissue damag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-09, Vol.36 (36), p.e2404101-n/a
Hauptverfasser: Nam, Seonghyeon, Cha, Gi Doo, Sunwoo, Sung‐Hyuk, Jeong, Jae Hwan, Kang, Hyejeong, Park, Ok Kyu, Lee, Kyeong‐Yeon, Oh, Seil, Hyeon, Taeghwan, Choi, Seung Hong, Lee, Seung‐Pyo, Kim, Dae‐Hyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e2404101
container_title Advanced materials (Weinheim)
container_volume 36
creator Nam, Seonghyeon
Cha, Gi Doo
Sunwoo, Sung‐Hyuk
Jeong, Jae Hwan
Kang, Hyejeong
Park, Ok Kyu
Lee, Kyeong‐Yeon
Oh, Seil
Hyeon, Taeghwan
Choi, Seung Hong
Lee, Seung‐Pyo
Kim, Dae‐Hyeong
description Implantable bioelectronics has attracted significant attention in electroceuticals and clinical medicine for precise diagnosis and efficient treatment of target diseases. However, conventional rigid implantable devices face challenges such as poor tissue‐device interface and unavoidable tissue damage during surgical implantation. Despite continuous efforts to utilize various soft materials to address such issues, their practical applications remain limited. Here, a needle‐like stretchable microfiber composed of a phase‐convertible liquid metal (LM) core and a multifunctional nanocomposite shell for minimally invasive soft bioelectronics is reported. The sharp tapered microfiber can be stiffened by freezing akin to a conventional needle to penetrate soft tissue with minimal incision. Once implanted in vivo where the LM melts, unlike conventional stiff needles, it regains soft mechanical properties, which facilitate a seamless tissue‐device interface. The nanocomposite incorporating with functional nanomaterials exhibits both low impedance and the ability to detect physiological pH, providing biosensing and stimulation capabilities. The fluidic LM embedded in the nanocomposite shell enables high stretchability and strain‐insensitive electrical properties. This multifunctional biphasic microfiber conforms to the surfaces of the stomach, muscle, and heart, offering a promising approach for electrophysiological recording, pH sensing, electrical stimulation, and radiofrequency ablation in vivo. The needle‐like stretchable multifunctional microfiber for minimally invasive bioelectronics is developed, featuring a liquid metal core‐nanocomposite shell structure. This design allows stiffness control based on phase transition and offers advantageous properties of both materials such as softness, stretchability, conductivity, and strain‐insensitivity. Further functionalization enhances its biosensing and stimulation capabilities, showing promise for clinical translation across various in vivo applications.
doi_str_mv 10.1002/adma.202404101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065271963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065271963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2981-bf28052aae929ea8c32967c5bfe189602a1a0f07d4f7b1e7634b2c6e8ee06f553</originalsourceid><addsrcrecordid>eNqFkL1u2zAUhYkgReOkXTMGArJkkXtJkZQ4Oj9NDdjp0s4CRV8idCjJIaUE3voIfcY-SRnYTYEsmS4u8J2Dcw4hpxSmFIB90atWTxkwDpwCPSATKhjNOShxSCagCpEryasjchzjGgCUBPmRHBVVxZkAPiHmDnHl8c-v3wv3gNly9IOzY2cG13faZ5duc6-jM9nSmdBb12DIbB_S27lWe7_N5t1TAp4wm7cbr7tBNx6TrEePZgh950z8RD5Y7SN-3t8T8vPrzY-rb_ni--38arbIDVMVzRvLKhBMa1RMoa5MwZQsjWgs0ioFZ5pqsFCuuC0biqUseMOMxAoRpBWiOCEXO99N6B9HjEPdumjQp1jYj7EuQApWUiWLhJ6_Qdf9GFLjRFGQheSUQaKmOyp1jzGgrTch1Q7bmkL9Mn_9Mn_9On8SnO1tx6bF1Sv-b-8EqB3w7Dxu37GrZ9fL2X_zv3CpkoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106364120</pqid></control><display><type>article</type><title>Needle‐Like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nam, Seonghyeon ; Cha, Gi Doo ; Sunwoo, Sung‐Hyuk ; Jeong, Jae Hwan ; Kang, Hyejeong ; Park, Ok Kyu ; Lee, Kyeong‐Yeon ; Oh, Seil ; Hyeon, Taeghwan ; Choi, Seung Hong ; Lee, Seung‐Pyo ; Kim, Dae‐Hyeong</creator><creatorcontrib>Nam, Seonghyeon ; Cha, Gi Doo ; Sunwoo, Sung‐Hyuk ; Jeong, Jae Hwan ; Kang, Hyejeong ; Park, Ok Kyu ; Lee, Kyeong‐Yeon ; Oh, Seil ; Hyeon, Taeghwan ; Choi, Seung Hong ; Lee, Seung‐Pyo ; Kim, Dae‐Hyeong</creatorcontrib><description>Implantable bioelectronics has attracted significant attention in electroceuticals and clinical medicine for precise diagnosis and efficient treatment of target diseases. However, conventional rigid implantable devices face challenges such as poor tissue‐device interface and unavoidable tissue damage during surgical implantation. Despite continuous efforts to utilize various soft materials to address such issues, their practical applications remain limited. Here, a needle‐like stretchable microfiber composed of a phase‐convertible liquid metal (LM) core and a multifunctional nanocomposite shell for minimally invasive soft bioelectronics is reported. The sharp tapered microfiber can be stiffened by freezing akin to a conventional needle to penetrate soft tissue with minimal incision. Once implanted in vivo where the LM melts, unlike conventional stiff needles, it regains soft mechanical properties, which facilitate a seamless tissue‐device interface. The nanocomposite incorporating with functional nanomaterials exhibits both low impedance and the ability to detect physiological pH, providing biosensing and stimulation capabilities. The fluidic LM embedded in the nanocomposite shell enables high stretchability and strain‐insensitive electrical properties. This multifunctional biphasic microfiber conforms to the surfaces of the stomach, muscle, and heart, offering a promising approach for electrophysiological recording, pH sensing, electrical stimulation, and radiofrequency ablation in vivo. The needle‐like stretchable multifunctional microfiber for minimally invasive bioelectronics is developed, featuring a liquid metal core‐nanocomposite shell structure. This design allows stiffness control based on phase transition and offers advantageous properties of both materials such as softness, stretchability, conductivity, and strain‐insensitivity. Further functionalization enhances its biosensing and stimulation capabilities, showing promise for clinical translation across various in vivo applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202404101</identifier><identifier>PMID: 38842504</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Ablation ; bioelectronics ; cardiac application ; Clinical medicine ; Electrical properties ; Freezing ; Functional materials ; implantable device ; in vivo application ; liquid metal ; Liquid metals ; Mechanical properties ; Microfibers ; minimally invasive ; nanocomposite ; Nanocomposites ; Nanomaterials ; Radio frequency ; Soft tissues ; Stimulation ; Strain ; Stretchability ; Surgical equipment</subject><ispartof>Advanced materials (Weinheim), 2024-09, Vol.36 (36), p.e2404101-n/a</ispartof><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2981-bf28052aae929ea8c32967c5bfe189602a1a0f07d4f7b1e7634b2c6e8ee06f553</cites><orcidid>0000-0002-4722-1893 ; 0000-0001-9612-0928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202404101$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202404101$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38842504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nam, Seonghyeon</creatorcontrib><creatorcontrib>Cha, Gi Doo</creatorcontrib><creatorcontrib>Sunwoo, Sung‐Hyuk</creatorcontrib><creatorcontrib>Jeong, Jae Hwan</creatorcontrib><creatorcontrib>Kang, Hyejeong</creatorcontrib><creatorcontrib>Park, Ok Kyu</creatorcontrib><creatorcontrib>Lee, Kyeong‐Yeon</creatorcontrib><creatorcontrib>Oh, Seil</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Choi, Seung Hong</creatorcontrib><creatorcontrib>Lee, Seung‐Pyo</creatorcontrib><creatorcontrib>Kim, Dae‐Hyeong</creatorcontrib><title>Needle‐Like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Implantable bioelectronics has attracted significant attention in electroceuticals and clinical medicine for precise diagnosis and efficient treatment of target diseases. However, conventional rigid implantable devices face challenges such as poor tissue‐device interface and unavoidable tissue damage during surgical implantation. Despite continuous efforts to utilize various soft materials to address such issues, their practical applications remain limited. Here, a needle‐like stretchable microfiber composed of a phase‐convertible liquid metal (LM) core and a multifunctional nanocomposite shell for minimally invasive soft bioelectronics is reported. The sharp tapered microfiber can be stiffened by freezing akin to a conventional needle to penetrate soft tissue with minimal incision. Once implanted in vivo where the LM melts, unlike conventional stiff needles, it regains soft mechanical properties, which facilitate a seamless tissue‐device interface. The nanocomposite incorporating with functional nanomaterials exhibits both low impedance and the ability to detect physiological pH, providing biosensing and stimulation capabilities. The fluidic LM embedded in the nanocomposite shell enables high stretchability and strain‐insensitive electrical properties. This multifunctional biphasic microfiber conforms to the surfaces of the stomach, muscle, and heart, offering a promising approach for electrophysiological recording, pH sensing, electrical stimulation, and radiofrequency ablation in vivo. The needle‐like stretchable multifunctional microfiber for minimally invasive bioelectronics is developed, featuring a liquid metal core‐nanocomposite shell structure. This design allows stiffness control based on phase transition and offers advantageous properties of both materials such as softness, stretchability, conductivity, and strain‐insensitivity. Further functionalization enhances its biosensing and stimulation capabilities, showing promise for clinical translation across various in vivo applications.</description><subject>Ablation</subject><subject>bioelectronics</subject><subject>cardiac application</subject><subject>Clinical medicine</subject><subject>Electrical properties</subject><subject>Freezing</subject><subject>Functional materials</subject><subject>implantable device</subject><subject>in vivo application</subject><subject>liquid metal</subject><subject>Liquid metals</subject><subject>Mechanical properties</subject><subject>Microfibers</subject><subject>minimally invasive</subject><subject>nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Radio frequency</subject><subject>Soft tissues</subject><subject>Stimulation</subject><subject>Strain</subject><subject>Stretchability</subject><subject>Surgical equipment</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkL1u2zAUhYkgReOkXTMGArJkkXtJkZQ4Oj9NDdjp0s4CRV8idCjJIaUE3voIfcY-SRnYTYEsmS4u8J2Dcw4hpxSmFIB90atWTxkwDpwCPSATKhjNOShxSCagCpEryasjchzjGgCUBPmRHBVVxZkAPiHmDnHl8c-v3wv3gNly9IOzY2cG13faZ5duc6-jM9nSmdBb12DIbB_S27lWe7_N5t1TAp4wm7cbr7tBNx6TrEePZgh950z8RD5Y7SN-3t8T8vPrzY-rb_ni--38arbIDVMVzRvLKhBMa1RMoa5MwZQsjWgs0ioFZ5pqsFCuuC0biqUseMOMxAoRpBWiOCEXO99N6B9HjEPdumjQp1jYj7EuQApWUiWLhJ6_Qdf9GFLjRFGQheSUQaKmOyp1jzGgrTch1Q7bmkL9Mn_9Mn_9On8SnO1tx6bF1Sv-b-8EqB3w7Dxu37GrZ9fL2X_zv3CpkoU</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Nam, Seonghyeon</creator><creator>Cha, Gi Doo</creator><creator>Sunwoo, Sung‐Hyuk</creator><creator>Jeong, Jae Hwan</creator><creator>Kang, Hyejeong</creator><creator>Park, Ok Kyu</creator><creator>Lee, Kyeong‐Yeon</creator><creator>Oh, Seil</creator><creator>Hyeon, Taeghwan</creator><creator>Choi, Seung Hong</creator><creator>Lee, Seung‐Pyo</creator><creator>Kim, Dae‐Hyeong</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4722-1893</orcidid><orcidid>https://orcid.org/0000-0001-9612-0928</orcidid></search><sort><creationdate>20240901</creationdate><title>Needle‐Like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics</title><author>Nam, Seonghyeon ; Cha, Gi Doo ; Sunwoo, Sung‐Hyuk ; Jeong, Jae Hwan ; Kang, Hyejeong ; Park, Ok Kyu ; Lee, Kyeong‐Yeon ; Oh, Seil ; Hyeon, Taeghwan ; Choi, Seung Hong ; Lee, Seung‐Pyo ; Kim, Dae‐Hyeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2981-bf28052aae929ea8c32967c5bfe189602a1a0f07d4f7b1e7634b2c6e8ee06f553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>bioelectronics</topic><topic>cardiac application</topic><topic>Clinical medicine</topic><topic>Electrical properties</topic><topic>Freezing</topic><topic>Functional materials</topic><topic>implantable device</topic><topic>in vivo application</topic><topic>liquid metal</topic><topic>Liquid metals</topic><topic>Mechanical properties</topic><topic>Microfibers</topic><topic>minimally invasive</topic><topic>nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Radio frequency</topic><topic>Soft tissues</topic><topic>Stimulation</topic><topic>Strain</topic><topic>Stretchability</topic><topic>Surgical equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Seonghyeon</creatorcontrib><creatorcontrib>Cha, Gi Doo</creatorcontrib><creatorcontrib>Sunwoo, Sung‐Hyuk</creatorcontrib><creatorcontrib>Jeong, Jae Hwan</creatorcontrib><creatorcontrib>Kang, Hyejeong</creatorcontrib><creatorcontrib>Park, Ok Kyu</creatorcontrib><creatorcontrib>Lee, Kyeong‐Yeon</creatorcontrib><creatorcontrib>Oh, Seil</creatorcontrib><creatorcontrib>Hyeon, Taeghwan</creatorcontrib><creatorcontrib>Choi, Seung Hong</creatorcontrib><creatorcontrib>Lee, Seung‐Pyo</creatorcontrib><creatorcontrib>Kim, Dae‐Hyeong</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Seonghyeon</au><au>Cha, Gi Doo</au><au>Sunwoo, Sung‐Hyuk</au><au>Jeong, Jae Hwan</au><au>Kang, Hyejeong</au><au>Park, Ok Kyu</au><au>Lee, Kyeong‐Yeon</au><au>Oh, Seil</au><au>Hyeon, Taeghwan</au><au>Choi, Seung Hong</au><au>Lee, Seung‐Pyo</au><au>Kim, Dae‐Hyeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Needle‐Like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>36</volume><issue>36</issue><spage>e2404101</spage><epage>n/a</epage><pages>e2404101-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Implantable bioelectronics has attracted significant attention in electroceuticals and clinical medicine for precise diagnosis and efficient treatment of target diseases. However, conventional rigid implantable devices face challenges such as poor tissue‐device interface and unavoidable tissue damage during surgical implantation. Despite continuous efforts to utilize various soft materials to address such issues, their practical applications remain limited. Here, a needle‐like stretchable microfiber composed of a phase‐convertible liquid metal (LM) core and a multifunctional nanocomposite shell for minimally invasive soft bioelectronics is reported. The sharp tapered microfiber can be stiffened by freezing akin to a conventional needle to penetrate soft tissue with minimal incision. Once implanted in vivo where the LM melts, unlike conventional stiff needles, it regains soft mechanical properties, which facilitate a seamless tissue‐device interface. The nanocomposite incorporating with functional nanomaterials exhibits both low impedance and the ability to detect physiological pH, providing biosensing and stimulation capabilities. The fluidic LM embedded in the nanocomposite shell enables high stretchability and strain‐insensitive electrical properties. This multifunctional biphasic microfiber conforms to the surfaces of the stomach, muscle, and heart, offering a promising approach for electrophysiological recording, pH sensing, electrical stimulation, and radiofrequency ablation in vivo. The needle‐like stretchable multifunctional microfiber for minimally invasive bioelectronics is developed, featuring a liquid metal core‐nanocomposite shell structure. This design allows stiffness control based on phase transition and offers advantageous properties of both materials such as softness, stretchability, conductivity, and strain‐insensitivity. Further functionalization enhances its biosensing and stimulation capabilities, showing promise for clinical translation across various in vivo applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38842504</pmid><doi>10.1002/adma.202404101</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4722-1893</orcidid><orcidid>https://orcid.org/0000-0001-9612-0928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-09, Vol.36 (36), p.e2404101-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3065271963
source Wiley Online Library Journals Frontfile Complete
subjects Ablation
bioelectronics
cardiac application
Clinical medicine
Electrical properties
Freezing
Functional materials
implantable device
in vivo application
liquid metal
Liquid metals
Mechanical properties
Microfibers
minimally invasive
nanocomposite
Nanocomposites
Nanomaterials
Radio frequency
Soft tissues
Stimulation
Strain
Stretchability
Surgical equipment
title Needle‐Like Multifunctional Biphasic Microfiber for Minimally Invasive Implantable Bioelectronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Needle%E2%80%90Like%20Multifunctional%20Biphasic%20Microfiber%20for%20Minimally%20Invasive%20Implantable%20Bioelectronics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Nam,%20Seonghyeon&rft.date=2024-09-01&rft.volume=36&rft.issue=36&rft.spage=e2404101&rft.epage=n/a&rft.pages=e2404101-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202404101&rft_dat=%3Cproquest_cross%3E3065271963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106364120&rft_id=info:pmid/38842504&rfr_iscdi=true