Propelling Minimally Invasive Tissue Regeneration With Next‐Era Injectable Pre‐Formed Scaffolds

The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (33), p.e2400700-n/a
Hauptverfasser: Liao, Junhan, Timoshenko, Anastasia B., Cordova, Domenic J., Astudillo Potes, Maria D., Gaihre, Bipin, Liu, Xifeng, Elder, Benjamin D., Lu, Lichun, Tilton, Maryam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e2400700
container_title Advanced materials (Weinheim)
container_volume 36
creator Liao, Junhan
Timoshenko, Anastasia B.
Cordova, Domenic J.
Astudillo Potes, Maria D.
Gaihre, Bipin
Liu, Xifeng
Elder, Benjamin D.
Lu, Lichun
Tilton, Maryam
description The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost‐effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre‐formed scaffolds, focusing on their unique advantages. The injectable pre‐formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration. Injectable pre‐formed scaffolds are revolutionizing regenerative medicine, offering targeted, minimally invasive therapeutic delivery. This review discusses their fabrication, biomaterial advancements, and functionalization strategies, highlighting significant successes in treating age‐related conditions and broadening biomedical applications. Emerging trends and potential impacts in tissue engineering are explored.
doi_str_mv 10.1002/adma.202400700
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065271803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3093050358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2580-c4ecec5d99cd4fbd7240deca34bb8b98d434b2abce59d2b28d70558a558030663</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgaAUVkYUiYUl5cSJU3usuEstIC5ijBz7pLhKk2InQDcegWfkSXBVKBILg2XL-vzL5ydkL4JeBECPpJ7KHgWaAPQB1kgnYjQKExBsnXRAxCwUacK3yLZzEwAQKaSbZCvmPKEppR2ibmw9w7I01TgYmcpMZVnOg8vqRTrzgsG9ca7F4BbHWKGVjamr4NE0T8EVvjWf7x-nVno8QdXIvMTgxqK_PKvtFHVwp2RR1KV2O2SjkKXD3e-9Sx7OTu-PL8Lh9fnl8WAYKso4hCpBhYppIZROilz3_VAalYyTPOe54DrxJypzhUxomlOu-8AYl35BDGkad8nhMndm6-cWXZNNjVN-OFlh3brMI0b7kdeeHvyhk7q1lf-dVyIGBjHjXvWWStnaOYtFNrO-ITvPIsgW9WeL-rNV_f7B_ndsm_sKVvynbw_EEryaEuf_xGWDk9HgN_wLbuGTZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093050358</pqid></control><display><type>article</type><title>Propelling Minimally Invasive Tissue Regeneration With Next‐Era Injectable Pre‐Formed Scaffolds</title><source>Access via Wiley Online Library</source><creator>Liao, Junhan ; Timoshenko, Anastasia B. ; Cordova, Domenic J. ; Astudillo Potes, Maria D. ; Gaihre, Bipin ; Liu, Xifeng ; Elder, Benjamin D. ; Lu, Lichun ; Tilton, Maryam</creator><creatorcontrib>Liao, Junhan ; Timoshenko, Anastasia B. ; Cordova, Domenic J. ; Astudillo Potes, Maria D. ; Gaihre, Bipin ; Liu, Xifeng ; Elder, Benjamin D. ; Lu, Lichun ; Tilton, Maryam</creatorcontrib><description>The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost‐effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre‐formed scaffolds, focusing on their unique advantages. The injectable pre‐formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration. Injectable pre‐formed scaffolds are revolutionizing regenerative medicine, offering targeted, minimally invasive therapeutic delivery. This review discusses their fabrication, biomaterial advancements, and functionalization strategies, highlighting significant successes in treating age‐related conditions and broadening biomedical applications. Emerging trends and potential impacts in tissue engineering are explored.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202400700</identifier><identifier>PMID: 38842622</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D bioprinting ; biomaterials ; Biomedical materials ; Compressibility ; Effectiveness ; injectable scaffolds ; minimally invasive tissue regeneration ; Polymerization ; Regeneration (physiology) ; regenerative medicine ; Scaffolds ; Tissue engineering</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2400700-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2580-c4ecec5d99cd4fbd7240deca34bb8b98d434b2abce59d2b28d70558a558030663</cites><orcidid>0000-0003-4495-5813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202400700$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202400700$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38842622$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Junhan</creatorcontrib><creatorcontrib>Timoshenko, Anastasia B.</creatorcontrib><creatorcontrib>Cordova, Domenic J.</creatorcontrib><creatorcontrib>Astudillo Potes, Maria D.</creatorcontrib><creatorcontrib>Gaihre, Bipin</creatorcontrib><creatorcontrib>Liu, Xifeng</creatorcontrib><creatorcontrib>Elder, Benjamin D.</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><creatorcontrib>Tilton, Maryam</creatorcontrib><title>Propelling Minimally Invasive Tissue Regeneration With Next‐Era Injectable Pre‐Formed Scaffolds</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost‐effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre‐formed scaffolds, focusing on their unique advantages. The injectable pre‐formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration. Injectable pre‐formed scaffolds are revolutionizing regenerative medicine, offering targeted, minimally invasive therapeutic delivery. This review discusses their fabrication, biomaterial advancements, and functionalization strategies, highlighting significant successes in treating age‐related conditions and broadening biomedical applications. Emerging trends and potential impacts in tissue engineering are explored.</description><subject>3D bioprinting</subject><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>Compressibility</subject><subject>Effectiveness</subject><subject>injectable scaffolds</subject><subject>minimally invasive tissue regeneration</subject><subject>Polymerization</subject><subject>Regeneration (physiology)</subject><subject>regenerative medicine</subject><subject>Scaffolds</subject><subject>Tissue engineering</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0LtOwzAUBmALgaAUVkYUiYUl5cSJU3usuEstIC5ijBz7pLhKk2InQDcegWfkSXBVKBILg2XL-vzL5ydkL4JeBECPpJ7KHgWaAPQB1kgnYjQKExBsnXRAxCwUacK3yLZzEwAQKaSbZCvmPKEppR2ibmw9w7I01TgYmcpMZVnOg8vqRTrzgsG9ca7F4BbHWKGVjamr4NE0T8EVvjWf7x-nVno8QdXIvMTgxqK_PKvtFHVwp2RR1KV2O2SjkKXD3e-9Sx7OTu-PL8Lh9fnl8WAYKso4hCpBhYppIZROilz3_VAalYyTPOe54DrxJypzhUxomlOu-8AYl35BDGkad8nhMndm6-cWXZNNjVN-OFlh3brMI0b7kdeeHvyhk7q1lf-dVyIGBjHjXvWWStnaOYtFNrO-ITvPIsgW9WeL-rNV_f7B_ndsm_sKVvynbw_EEryaEuf_xGWDk9HgN_wLbuGTZg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Liao, Junhan</creator><creator>Timoshenko, Anastasia B.</creator><creator>Cordova, Domenic J.</creator><creator>Astudillo Potes, Maria D.</creator><creator>Gaihre, Bipin</creator><creator>Liu, Xifeng</creator><creator>Elder, Benjamin D.</creator><creator>Lu, Lichun</creator><creator>Tilton, Maryam</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4495-5813</orcidid></search><sort><creationdate>20240801</creationdate><title>Propelling Minimally Invasive Tissue Regeneration With Next‐Era Injectable Pre‐Formed Scaffolds</title><author>Liao, Junhan ; Timoshenko, Anastasia B. ; Cordova, Domenic J. ; Astudillo Potes, Maria D. ; Gaihre, Bipin ; Liu, Xifeng ; Elder, Benjamin D. ; Lu, Lichun ; Tilton, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2580-c4ecec5d99cd4fbd7240deca34bb8b98d434b2abce59d2b28d70558a558030663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D bioprinting</topic><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>Compressibility</topic><topic>Effectiveness</topic><topic>injectable scaffolds</topic><topic>minimally invasive tissue regeneration</topic><topic>Polymerization</topic><topic>Regeneration (physiology)</topic><topic>regenerative medicine</topic><topic>Scaffolds</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Junhan</creatorcontrib><creatorcontrib>Timoshenko, Anastasia B.</creatorcontrib><creatorcontrib>Cordova, Domenic J.</creatorcontrib><creatorcontrib>Astudillo Potes, Maria D.</creatorcontrib><creatorcontrib>Gaihre, Bipin</creatorcontrib><creatorcontrib>Liu, Xifeng</creatorcontrib><creatorcontrib>Elder, Benjamin D.</creatorcontrib><creatorcontrib>Lu, Lichun</creatorcontrib><creatorcontrib>Tilton, Maryam</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Junhan</au><au>Timoshenko, Anastasia B.</au><au>Cordova, Domenic J.</au><au>Astudillo Potes, Maria D.</au><au>Gaihre, Bipin</au><au>Liu, Xifeng</au><au>Elder, Benjamin D.</au><au>Lu, Lichun</au><au>Tilton, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propelling Minimally Invasive Tissue Regeneration With Next‐Era Injectable Pre‐Formed Scaffolds</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>33</issue><spage>e2400700</spage><epage>n/a</epage><pages>e2400700-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost‐effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre‐formed scaffolds, focusing on their unique advantages. The injectable pre‐formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration. Injectable pre‐formed scaffolds are revolutionizing regenerative medicine, offering targeted, minimally invasive therapeutic delivery. This review discusses their fabrication, biomaterial advancements, and functionalization strategies, highlighting significant successes in treating age‐related conditions and broadening biomedical applications. Emerging trends and potential impacts in tissue engineering are explored.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38842622</pmid><doi>10.1002/adma.202400700</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-4495-5813</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (33), p.e2400700-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3065271803
source Access via Wiley Online Library
subjects 3D bioprinting
biomaterials
Biomedical materials
Compressibility
Effectiveness
injectable scaffolds
minimally invasive tissue regeneration
Polymerization
Regeneration (physiology)
regenerative medicine
Scaffolds
Tissue engineering
title Propelling Minimally Invasive Tissue Regeneration With Next‐Era Injectable Pre‐Formed Scaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propelling%20Minimally%20Invasive%20Tissue%20Regeneration%20With%20Next%E2%80%90Era%20Injectable%20Pre%E2%80%90Formed%20Scaffolds&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liao,%20Junhan&rft.date=2024-08-01&rft.volume=36&rft.issue=33&rft.spage=e2400700&rft.epage=n/a&rft.pages=e2400700-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202400700&rft_dat=%3Cproquest_cross%3E3093050358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093050358&rft_id=info:pmid/38842622&rfr_iscdi=true