Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Life sciences 2024-06, Vol.67 (6), p.1089-1105
Hauptverfasser: Chen, Runfa, Zhao, Meng-Jie, Li, Yu-Min, Liu, Ao-Hui, Wang, Ru-Xin, Mei, Yu-Chao, Chen, Xuefeng, Du, Hai-Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1105
container_issue 6
container_start_page 1089
container_title Science China. Life sciences
container_volume 67
creator Chen, Runfa
Zhao, Meng-Jie
Li, Yu-Min
Liu, Ao-Hui
Wang, Ru-Xin
Mei, Yu-Chao
Chen, Xuefeng
Du, Hai-Ning
description Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.
doi_str_mv 10.1007/s11427-024-2543-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3065271791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065271791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-cb9b67687c5759ce2067d89eb05f65c05eceaca3555bbb6d0a1366094a81251d3</originalsourceid><addsrcrecordid>eNp1kD1PHDEQhi1EBOjCD6BBltLQOPHH-qtEQEIUBA1pY9neOTDsrS_2bnH_Pr4cECkSbsbyPPOO9SB0wuhnRqn-UhnruCaUd4TLThC7h46YUZYwY-x-uyvdES2oPETHtT7RdoSgXOsDdCiM6bgS8gj9ukwE-7HHU0lkBdPjZvBTyiPOS_yY6pRHwNfih1B4PfgN7ttTGuOESx6g4jTiy9tz3Oc5DEDqVLZJoYB_xgXWPpWP6MPSDxWOX-oC_fx6dX9xTW7uvn2_OL8hUfBuIjHYoLQyOkotbQROle6NhUDlUslIJUTw0QspZQhB9dQzoRS1nTeMS9aLBTrb5a5L_j1Dndwq1QjD4EfIc3WCKsk105Y19NN_6FOey9h-95cSQhqhGsV2VCy51gJLty5p5cvGMeq2_t3Ov2v-3da_s23m9CV5Divo3yZebTeA74DaWuMDlH-r30_9A4-ijdI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065335836</pqid></control><display><type>article</type><title>Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Runfa ; Zhao, Meng-Jie ; Li, Yu-Min ; Liu, Ao-Hui ; Wang, Ru-Xin ; Mei, Yu-Chao ; Chen, Xuefeng ; Du, Hai-Ning</creator><creatorcontrib>Chen, Runfa ; Zhao, Meng-Jie ; Li, Yu-Min ; Liu, Ao-Hui ; Wang, Ru-Xin ; Mei, Yu-Chao ; Chen, Xuefeng ; Du, Hai-Ning</creatorcontrib><description>Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.</description><identifier>ISSN: 1674-7305</identifier><identifier>EISSN: 1869-1889</identifier><identifier>DOI: 10.1007/s11427-024-2543-9</identifier><identifier>PMID: 38842635</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Biomedical and Life Sciences ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Cover Article ; DNA Breaks, Double-Stranded ; DNA damage ; DNA End-Joining Repair ; DNA methylation ; DNA Repair ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Double-strand break repair ; Histone H3 ; Histones ; Histones - metabolism ; Homologous Recombination ; Humans ; Ku Autoantigen - genetics ; Ku Autoantigen - metabolism ; Life Sciences ; Methylation ; Non-homologous end joining ; Replication Protein A - genetics ; Replication Protein A - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Yeast</subject><ispartof>Science China. Life sciences, 2024-06, Vol.67 (6), p.1089-1105</ispartof><rights>Science China Press 2024</rights><rights>2024. Science China Press.</rights><rights>Science China Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-cb9b67687c5759ce2067d89eb05f65c05eceaca3555bbb6d0a1366094a81251d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11427-024-2543-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11427-024-2543-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38842635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Runfa</creatorcontrib><creatorcontrib>Zhao, Meng-Jie</creatorcontrib><creatorcontrib>Li, Yu-Min</creatorcontrib><creatorcontrib>Liu, Ao-Hui</creatorcontrib><creatorcontrib>Wang, Ru-Xin</creatorcontrib><creatorcontrib>Mei, Yu-Chao</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><creatorcontrib>Du, Hai-Ning</creatorcontrib><title>Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair</title><title>Science China. Life sciences</title><addtitle>Sci. China Life Sci</addtitle><addtitle>Sci China Life Sci</addtitle><description>Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.</description><subject>Biomedical and Life Sciences</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Cover Article</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA End-Joining Repair</subject><subject>DNA methylation</subject><subject>DNA Repair</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Double-strand break repair</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Homologous Recombination</subject><subject>Humans</subject><subject>Ku Autoantigen - genetics</subject><subject>Ku Autoantigen - metabolism</subject><subject>Life Sciences</subject><subject>Methylation</subject><subject>Non-homologous end joining</subject><subject>Replication Protein A - genetics</subject><subject>Replication Protein A - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Yeast</subject><issn>1674-7305</issn><issn>1869-1889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PHDEQhi1EBOjCD6BBltLQOPHH-qtEQEIUBA1pY9neOTDsrS_2bnH_Pr4cECkSbsbyPPOO9SB0wuhnRqn-UhnruCaUd4TLThC7h46YUZYwY-x-uyvdES2oPETHtT7RdoSgXOsDdCiM6bgS8gj9ukwE-7HHU0lkBdPjZvBTyiPOS_yY6pRHwNfih1B4PfgN7ttTGuOESx6g4jTiy9tz3Oc5DEDqVLZJoYB_xgXWPpWP6MPSDxWOX-oC_fx6dX9xTW7uvn2_OL8hUfBuIjHYoLQyOkotbQROle6NhUDlUslIJUTw0QspZQhB9dQzoRS1nTeMS9aLBTrb5a5L_j1Dndwq1QjD4EfIc3WCKsk105Y19NN_6FOey9h-95cSQhqhGsV2VCy51gJLty5p5cvGMeq2_t3Ov2v-3da_s23m9CV5Divo3yZebTeA74DaWuMDlH-r30_9A4-ijdI</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chen, Runfa</creator><creator>Zhao, Meng-Jie</creator><creator>Li, Yu-Min</creator><creator>Liu, Ao-Hui</creator><creator>Wang, Ru-Xin</creator><creator>Mei, Yu-Chao</creator><creator>Chen, Xuefeng</creator><creator>Du, Hai-Ning</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240601</creationdate><title>Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair</title><author>Chen, Runfa ; Zhao, Meng-Jie ; Li, Yu-Min ; Liu, Ao-Hui ; Wang, Ru-Xin ; Mei, Yu-Chao ; Chen, Xuefeng ; Du, Hai-Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-cb9b67687c5759ce2067d89eb05f65c05eceaca3555bbb6d0a1366094a81251d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomedical and Life Sciences</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Cover Article</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA End-Joining Repair</topic><topic>DNA methylation</topic><topic>DNA Repair</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Double-strand break repair</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Homologous Recombination</topic><topic>Humans</topic><topic>Ku Autoantigen - genetics</topic><topic>Ku Autoantigen - metabolism</topic><topic>Life Sciences</topic><topic>Methylation</topic><topic>Non-homologous end joining</topic><topic>Replication Protein A - genetics</topic><topic>Replication Protein A - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Runfa</creatorcontrib><creatorcontrib>Zhao, Meng-Jie</creatorcontrib><creatorcontrib>Li, Yu-Min</creatorcontrib><creatorcontrib>Liu, Ao-Hui</creatorcontrib><creatorcontrib>Wang, Ru-Xin</creatorcontrib><creatorcontrib>Mei, Yu-Chao</creatorcontrib><creatorcontrib>Chen, Xuefeng</creatorcontrib><creatorcontrib>Du, Hai-Ning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Science China. Life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Runfa</au><au>Zhao, Meng-Jie</au><au>Li, Yu-Min</au><au>Liu, Ao-Hui</au><au>Wang, Ru-Xin</au><au>Mei, Yu-Chao</au><au>Chen, Xuefeng</au><au>Du, Hai-Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair</atitle><jtitle>Science China. Life sciences</jtitle><stitle>Sci. China Life Sci</stitle><addtitle>Sci China Life Sci</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>67</volume><issue>6</issue><spage>1089</spage><epage>1105</epage><pages>1089-1105</pages><issn>1674-7305</issn><eissn>1869-1889</eissn><abstract>Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.</abstract><cop>Beijing</cop><pub>Science China Press</pub><pmid>38842635</pmid><doi>10.1007/s11427-024-2543-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7305
ispartof Science China. Life sciences, 2024-06, Vol.67 (6), p.1089-1105
issn 1674-7305
1869-1889
language eng
recordid cdi_proquest_miscellaneous_3065271791
source MEDLINE; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Chromatin
Chromatin - genetics
Chromatin - metabolism
Cover Article
DNA Breaks, Double-Stranded
DNA damage
DNA End-Joining Repair
DNA methylation
DNA Repair
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Double-strand break repair
Histone H3
Histones
Histones - metabolism
Homologous Recombination
Humans
Ku Autoantigen - genetics
Ku Autoantigen - metabolism
Life Sciences
Methylation
Non-homologous end joining
Replication Protein A - genetics
Replication Protein A - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Yeast
title Di- and tri-methylation of histone H3K36 play distinct roles in DNA double-strand break repair
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Di-%20and%20tri-methylation%20of%20histone%20H3K36%20play%20distinct%20roles%20in%20DNA%20double-strand%20break%20repair&rft.jtitle=Science%20China.%20Life%20sciences&rft.au=Chen,%20Runfa&rft.date=2024-06-01&rft.volume=67&rft.issue=6&rft.spage=1089&rft.epage=1105&rft.pages=1089-1105&rft.issn=1674-7305&rft.eissn=1869-1889&rft_id=info:doi/10.1007/s11427-024-2543-9&rft_dat=%3Cproquest_cross%3E3065271791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065335836&rft_id=info:pmid/38842635&rfr_iscdi=true