Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition

Multivalency is a fundamental principle in nature that leads to high‐affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin‐carbohydrate interactions that parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-10, Vol.63 (40), p.e202408751-n/a
1. Verfasser: Stauber, Julia M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page e202408751
container_title Angewandte Chemie International Edition
container_volume 63
creator Stauber, Julia M.
description Multivalency is a fundamental principle in nature that leads to high‐affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin‐carbohydrate interactions that participate in many essential biological processes. Designing high‐affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self‐assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well‐defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure‐function relationships governing lectin‐saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters. A supramolecular approach to the design of structurally precise glyconanoassemblies that leverages the versatility, tunability and modularity of subcomponent self‐assembly is described. Structural and electronic changes in ligand architecture enable a systematic method for understanding intricate structure–activity relationships governing multivalent lectin binding, thus offering insights into optimizing molecular recognition through synthetic design.
doi_str_mv 10.1002/anie.202408751
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3064580937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064580937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3121-2714753fb7c330c4793d91307505916286f4f43e89485b703f7b874691b108653</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMovrcuZcCNm9ZkbjJJliL1AfWB6DpkYkYjmaQmHaT_3pRqBTeu7l2c79zLh9ARwWOCcX2mg7PjGtcUC87IBtolrCYj4Bw2y04BRlwwsoP2cn4vvBC42UY7IEQtZcN20cOTdj4mF16rWzvX3sc8zJLuo7dm8DpVV35hos7Z9q13NlddTNUkvOlglpmpNXMXqkdr4mtwcxfDAdrqtM_28Hvuo-fLydPF9Wh6f3VzcT4dGSDlw5oTyhl0LTcA2FAu4UUSwJxhJklTi6ajHQUrJBWs5Rg63gpOG0lagkXDYB-drryzFD8Gm-eqd9lY73WwccgKcEOZwBJ4QU_-oO9xSKF8p6DIGKHlSqHGK8qkmHOynZol1-u0UASrZddq2bVad10Cx9_aoe3tyxr_KbcAcgV8Om8X_-jU-d3N5Ff-BQHeiSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108514894</pqid></control><display><type>article</type><title>Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition</title><source>Wiley Online Library All Journals</source><creator>Stauber, Julia M.</creator><creatorcontrib>Stauber, Julia M.</creatorcontrib><description>Multivalency is a fundamental principle in nature that leads to high‐affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin‐carbohydrate interactions that participate in many essential biological processes. Designing high‐affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self‐assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well‐defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure‐function relationships governing lectin‐saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters. A supramolecular approach to the design of structurally precise glyconanoassemblies that leverages the versatility, tunability and modularity of subcomponent self‐assembly is described. Structural and electronic changes in ligand architecture enable a systematic method for understanding intricate structure–activity relationships governing multivalent lectin binding, thus offering insights into optimizing molecular recognition through synthetic design.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202408751</identifier><identifier>PMID: 38829965</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Affinity ; Binders ; Binding ; Bioengineering ; Biological activity ; Biological effects ; Calorimetry ; Carbohydrates ; Chemical synthesis ; Concanavalin A ; Design ; Design optimization ; Electrostatic properties ; Electrostatics ; Glycoconjugates ; Lectins ; Metal ions ; molecular recognition ; Molecular structure ; multivalent binding ; Parameters ; Protein structure ; Recognition ; Self-assembly ; Structure-function relationships ; supramolecular chemistry ; Titration ; Titration calorimetry ; Valency</subject><ispartof>Angewandte Chemie International Edition, 2024-10, Vol.63 (40), p.e202408751-n/a</ispartof><rights>2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3121-2714753fb7c330c4793d91307505916286f4f43e89485b703f7b874691b108653</cites><orcidid>0000-0001-9783-907X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202408751$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202408751$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38829965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stauber, Julia M.</creatorcontrib><title>Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Multivalency is a fundamental principle in nature that leads to high‐affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin‐carbohydrate interactions that participate in many essential biological processes. Designing high‐affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self‐assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well‐defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure‐function relationships governing lectin‐saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters. A supramolecular approach to the design of structurally precise glyconanoassemblies that leverages the versatility, tunability and modularity of subcomponent self‐assembly is described. Structural and electronic changes in ligand architecture enable a systematic method for understanding intricate structure–activity relationships governing multivalent lectin binding, thus offering insights into optimizing molecular recognition through synthetic design.</description><subject>Affinity</subject><subject>Binders</subject><subject>Binding</subject><subject>Bioengineering</subject><subject>Biological activity</subject><subject>Biological effects</subject><subject>Calorimetry</subject><subject>Carbohydrates</subject><subject>Chemical synthesis</subject><subject>Concanavalin A</subject><subject>Design</subject><subject>Design optimization</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Glycoconjugates</subject><subject>Lectins</subject><subject>Metal ions</subject><subject>molecular recognition</subject><subject>Molecular structure</subject><subject>multivalent binding</subject><subject>Parameters</subject><subject>Protein structure</subject><subject>Recognition</subject><subject>Self-assembly</subject><subject>Structure-function relationships</subject><subject>supramolecular chemistry</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>Valency</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkEtLAzEURoMovrcuZcCNm9ZkbjJJliL1AfWB6DpkYkYjmaQmHaT_3pRqBTeu7l2c79zLh9ARwWOCcX2mg7PjGtcUC87IBtolrCYj4Bw2y04BRlwwsoP2cn4vvBC42UY7IEQtZcN20cOTdj4mF16rWzvX3sc8zJLuo7dm8DpVV35hos7Z9q13NlddTNUkvOlglpmpNXMXqkdr4mtwcxfDAdrqtM_28Hvuo-fLydPF9Wh6f3VzcT4dGSDlw5oTyhl0LTcA2FAu4UUSwJxhJklTi6ajHQUrJBWs5Rg63gpOG0lagkXDYB-drryzFD8Gm-eqd9lY73WwccgKcEOZwBJ4QU_-oO9xSKF8p6DIGKHlSqHGK8qkmHOynZol1-u0UASrZddq2bVad10Cx9_aoe3tyxr_KbcAcgV8Om8X_-jU-d3N5Ff-BQHeiSA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Stauber, Julia M.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9783-907X</orcidid></search><sort><creationdate>20241001</creationdate><title>Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition</title><author>Stauber, Julia M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3121-2714753fb7c330c4793d91307505916286f4f43e89485b703f7b874691b108653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>Binders</topic><topic>Binding</topic><topic>Bioengineering</topic><topic>Biological activity</topic><topic>Biological effects</topic><topic>Calorimetry</topic><topic>Carbohydrates</topic><topic>Chemical synthesis</topic><topic>Concanavalin A</topic><topic>Design</topic><topic>Design optimization</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Glycoconjugates</topic><topic>Lectins</topic><topic>Metal ions</topic><topic>molecular recognition</topic><topic>Molecular structure</topic><topic>multivalent binding</topic><topic>Parameters</topic><topic>Protein structure</topic><topic>Recognition</topic><topic>Self-assembly</topic><topic>Structure-function relationships</topic><topic>supramolecular chemistry</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>Valency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stauber, Julia M.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stauber, Julia M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>63</volume><issue>40</issue><spage>e202408751</spage><epage>n/a</epage><pages>e202408751-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Multivalency is a fundamental principle in nature that leads to high‐affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin‐carbohydrate interactions that participate in many essential biological processes. Designing high‐affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self‐assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well‐defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure‐function relationships governing lectin‐saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters. A supramolecular approach to the design of structurally precise glyconanoassemblies that leverages the versatility, tunability and modularity of subcomponent self‐assembly is described. Structural and electronic changes in ligand architecture enable a systematic method for understanding intricate structure–activity relationships governing multivalent lectin binding, thus offering insights into optimizing molecular recognition through synthetic design.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38829965</pmid><doi>10.1002/anie.202408751</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9783-907X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-10, Vol.63 (40), p.e202408751-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3064580937
source Wiley Online Library All Journals
subjects Affinity
Binders
Binding
Bioengineering
Biological activity
Biological effects
Calorimetry
Carbohydrates
Chemical synthesis
Concanavalin A
Design
Design optimization
Electrostatic properties
Electrostatics
Glycoconjugates
Lectins
Metal ions
molecular recognition
Molecular structure
multivalent binding
Parameters
Protein structure
Recognition
Self-assembly
Structure-function relationships
supramolecular chemistry
Titration
Titration calorimetry
Valency
title Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Metallosupramolecular%20Glycoassemblies%20for%20Enhancing%20Lectin%20Recognition&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Stauber,%20Julia%20M.&rft.date=2024-10-01&rft.volume=63&rft.issue=40&rft.spage=e202408751&rft.epage=n/a&rft.pages=e202408751-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202408751&rft_dat=%3Cproquest_cross%3E3064580937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3108514894&rft_id=info:pmid/38829965&rfr_iscdi=true