Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering
Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. A mutant E. coli NXBG-11-F34 with high tolerance to ur...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2024-06, Vol.135 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of applied microbiology |
container_volume | 135 |
creator | Zhang, Xiangjun Liu, Lu Ma, Cong Zhang, Haojie Liu, Huiyan Fang, Haitian |
description | Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production.
A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly.
ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains. |
doi_str_mv | 10.1093/jambio/lxae133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3064580727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064580727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-85abc33021e6cabc13e1cde58ee089fa657713e07b52656fe793512dc31fa68f3</originalsourceid><addsrcrecordid>eNpNUT1PwzAQtRCIlsLKiDyypLVjnKQjqgpUqsQCc-Q4l9RVbAfbqeiP4D9j2oKY7uvde7p7CN1SMqVkzmZboStlZ92nAMrYGRpTlvEkzfL0_F8-QlfebwmhjPDsEo1YUTCSz9Mx-lrp3tmdMi0OG8Ad7KDDtjkUch9UrQzgqOD3Jra88lgZvJxiaTsVQc4O7QaLoK3vN-CUxM5ajQPoHpwIgwPcd8JrgfUQRAvmQCFMjTUEUUUSicG0USQum_YaXTSi83BzihP0_rR8W7wk69fn1eJxnUhakJAUXFSSMZJSyGRMKQMqa-AFACnmjch4nsceySueZjxrIJ8zTtNaMhqHRcMm6P7IG2__GMCHUisvoeuEATv4kpHsgRckT_MInR6h0lnvHTRl75QWbl9SUv5YUB4tKE8WxIW7E_dQaaj_4L8_Z98SS4hU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064580727</pqid></control><display><type>article</type><title>Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Zhang, Xiangjun ; Liu, Lu ; Ma, Cong ; Zhang, Haojie ; Liu, Huiyan ; Fang, Haitian</creator><creatorcontrib>Zhang, Xiangjun ; Liu, Lu ; Ma, Cong ; Zhang, Haojie ; Liu, Huiyan ; Fang, Haitian</creatorcontrib><description>Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production.
A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly.
ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.</description><identifier>ISSN: 1365-2672</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1093/jambio/lxae133</identifier><identifier>PMID: 38830792</identifier><language>eng</language><publisher>England</publisher><subject>Bioreactors ; CRISPR-Cas Systems ; Cytidine - genetics ; Cytidine - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; Gene Editing - methods ; Metabolic Engineering ; Mutagenesis ; Plasma Gases ; Temperature</subject><ispartof>Journal of applied microbiology, 2024-06, Vol.135 (6)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Applied Microbiology International.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-85abc33021e6cabc13e1cde58ee089fa657713e07b52656fe793512dc31fa68f3</cites><orcidid>0000-0003-3153-0648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38830792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiangjun</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Ma, Cong</creatorcontrib><creatorcontrib>Zhang, Haojie</creatorcontrib><creatorcontrib>Liu, Huiyan</creatorcontrib><creatorcontrib>Fang, Haitian</creatorcontrib><title>Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production.
A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly.
ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.</description><subject>Bioreactors</subject><subject>CRISPR-Cas Systems</subject><subject>Cytidine - genetics</subject><subject>Cytidine - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>Gene Editing - methods</subject><subject>Metabolic Engineering</subject><subject>Mutagenesis</subject><subject>Plasma Gases</subject><subject>Temperature</subject><issn>1365-2672</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNUT1PwzAQtRCIlsLKiDyypLVjnKQjqgpUqsQCc-Q4l9RVbAfbqeiP4D9j2oKY7uvde7p7CN1SMqVkzmZboStlZ92nAMrYGRpTlvEkzfL0_F8-QlfebwmhjPDsEo1YUTCSz9Mx-lrp3tmdMi0OG8Ad7KDDtjkUch9UrQzgqOD3Jra88lgZvJxiaTsVQc4O7QaLoK3vN-CUxM5ajQPoHpwIgwPcd8JrgfUQRAvmQCFMjTUEUUUSicG0USQum_YaXTSi83BzihP0_rR8W7wk69fn1eJxnUhakJAUXFSSMZJSyGRMKQMqa-AFACnmjch4nsceySueZjxrIJ8zTtNaMhqHRcMm6P7IG2__GMCHUisvoeuEATv4kpHsgRckT_MInR6h0lnvHTRl75QWbl9SUv5YUB4tKE8WxIW7E_dQaaj_4L8_Z98SS4hU</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Zhang, Xiangjun</creator><creator>Liu, Lu</creator><creator>Ma, Cong</creator><creator>Zhang, Haojie</creator><creator>Liu, Huiyan</creator><creator>Fang, Haitian</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3153-0648</orcidid></search><sort><creationdate>20240603</creationdate><title>Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering</title><author>Zhang, Xiangjun ; Liu, Lu ; Ma, Cong ; Zhang, Haojie ; Liu, Huiyan ; Fang, Haitian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-85abc33021e6cabc13e1cde58ee089fa657713e07b52656fe793512dc31fa68f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioreactors</topic><topic>CRISPR-Cas Systems</topic><topic>Cytidine - genetics</topic><topic>Cytidine - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>Gene Editing - methods</topic><topic>Metabolic Engineering</topic><topic>Mutagenesis</topic><topic>Plasma Gases</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangjun</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Ma, Cong</creatorcontrib><creatorcontrib>Zhang, Haojie</creatorcontrib><creatorcontrib>Liu, Huiyan</creatorcontrib><creatorcontrib>Fang, Haitian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiangjun</au><au>Liu, Lu</au><au>Ma, Cong</au><au>Zhang, Haojie</au><au>Liu, Huiyan</au><au>Fang, Haitian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>135</volume><issue>6</issue><issn>1365-2672</issn><eissn>1365-2672</eissn><abstract>Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production.
A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly.
ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.</abstract><cop>England</cop><pmid>38830792</pmid><doi>10.1093/jambio/lxae133</doi><orcidid>https://orcid.org/0000-0003-3153-0648</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-2672 |
ispartof | Journal of applied microbiology, 2024-06, Vol.135 (6) |
issn | 1365-2672 1365-2672 |
language | eng |
recordid | cdi_proquest_miscellaneous_3064580727 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current) |
subjects | Bioreactors CRISPR-Cas Systems Cytidine - genetics Cytidine - metabolism Escherichia coli - genetics Escherichia coli - metabolism Fermentation Gene Editing - methods Metabolic Engineering Mutagenesis Plasma Gases Temperature |
title | Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20level%20of%20the%20cytidine%20biosynthesis%20in%20E.%20coli%20through%20atmospheric%20room%20temperature%20plasma%20mutagenesis%20and%20metabolic%20engineering&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Zhang,%20Xiangjun&rft.date=2024-06-03&rft.volume=135&rft.issue=6&rft.issn=1365-2672&rft.eissn=1365-2672&rft_id=info:doi/10.1093/jambio/lxae133&rft_dat=%3Cproquest_cross%3E3064580727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064580727&rft_id=info:pmid/38830792&rfr_iscdi=true |