Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering

Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. A mutant E. coli NXBG-11-F34 with high tolerance to ur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2024-06, Vol.135 (6)
Hauptverfasser: Zhang, Xiangjun, Liu, Lu, Ma, Cong, Zhang, Haojie, Liu, Huiyan, Fang, Haitian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of applied microbiology
container_volume 135
creator Zhang, Xiangjun
Liu, Lu
Ma, Cong
Zhang, Haojie
Liu, Huiyan
Fang, Haitian
description Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly. ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.
doi_str_mv 10.1093/jambio/lxae133
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3064580727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064580727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-85abc33021e6cabc13e1cde58ee089fa657713e07b52656fe793512dc31fa68f3</originalsourceid><addsrcrecordid>eNpNUT1PwzAQtRCIlsLKiDyypLVjnKQjqgpUqsQCc-Q4l9RVbAfbqeiP4D9j2oKY7uvde7p7CN1SMqVkzmZboStlZ92nAMrYGRpTlvEkzfL0_F8-QlfebwmhjPDsEo1YUTCSz9Mx-lrp3tmdMi0OG8Ad7KDDtjkUch9UrQzgqOD3Jra88lgZvJxiaTsVQc4O7QaLoK3vN-CUxM5ajQPoHpwIgwPcd8JrgfUQRAvmQCFMjTUEUUUSicG0USQum_YaXTSi83BzihP0_rR8W7wk69fn1eJxnUhakJAUXFSSMZJSyGRMKQMqa-AFACnmjch4nsceySueZjxrIJ8zTtNaMhqHRcMm6P7IG2__GMCHUisvoeuEATv4kpHsgRckT_MInR6h0lnvHTRl75QWbl9SUv5YUB4tKE8WxIW7E_dQaaj_4L8_Z98SS4hU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064580727</pqid></control><display><type>article</type><title>Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Zhang, Xiangjun ; Liu, Lu ; Ma, Cong ; Zhang, Haojie ; Liu, Huiyan ; Fang, Haitian</creator><creatorcontrib>Zhang, Xiangjun ; Liu, Lu ; Ma, Cong ; Zhang, Haojie ; Liu, Huiyan ; Fang, Haitian</creatorcontrib><description>Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly. ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.</description><identifier>ISSN: 1365-2672</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1093/jambio/lxae133</identifier><identifier>PMID: 38830792</identifier><language>eng</language><publisher>England</publisher><subject>Bioreactors ; CRISPR-Cas Systems ; Cytidine - genetics ; Cytidine - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; Gene Editing - methods ; Metabolic Engineering ; Mutagenesis ; Plasma Gases ; Temperature</subject><ispartof>Journal of applied microbiology, 2024-06, Vol.135 (6)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of Applied Microbiology International.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-85abc33021e6cabc13e1cde58ee089fa657713e07b52656fe793512dc31fa68f3</cites><orcidid>0000-0003-3153-0648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38830792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiangjun</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Ma, Cong</creatorcontrib><creatorcontrib>Zhang, Haojie</creatorcontrib><creatorcontrib>Liu, Huiyan</creatorcontrib><creatorcontrib>Fang, Haitian</creatorcontrib><title>Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly. ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.</description><subject>Bioreactors</subject><subject>CRISPR-Cas Systems</subject><subject>Cytidine - genetics</subject><subject>Cytidine - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>Gene Editing - methods</subject><subject>Metabolic Engineering</subject><subject>Mutagenesis</subject><subject>Plasma Gases</subject><subject>Temperature</subject><issn>1365-2672</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNUT1PwzAQtRCIlsLKiDyypLVjnKQjqgpUqsQCc-Q4l9RVbAfbqeiP4D9j2oKY7uvde7p7CN1SMqVkzmZboStlZ92nAMrYGRpTlvEkzfL0_F8-QlfebwmhjPDsEo1YUTCSz9Mx-lrp3tmdMi0OG8Ad7KDDtjkUch9UrQzgqOD3Jra88lgZvJxiaTsVQc4O7QaLoK3vN-CUxM5ajQPoHpwIgwPcd8JrgfUQRAvmQCFMjTUEUUUSicG0USQum_YaXTSi83BzihP0_rR8W7wk69fn1eJxnUhakJAUXFSSMZJSyGRMKQMqa-AFACnmjch4nsceySueZjxrIJ8zTtNaMhqHRcMm6P7IG2__GMCHUisvoeuEATv4kpHsgRckT_MInR6h0lnvHTRl75QWbl9SUv5YUB4tKE8WxIW7E_dQaaj_4L8_Z98SS4hU</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Zhang, Xiangjun</creator><creator>Liu, Lu</creator><creator>Ma, Cong</creator><creator>Zhang, Haojie</creator><creator>Liu, Huiyan</creator><creator>Fang, Haitian</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3153-0648</orcidid></search><sort><creationdate>20240603</creationdate><title>Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering</title><author>Zhang, Xiangjun ; Liu, Lu ; Ma, Cong ; Zhang, Haojie ; Liu, Huiyan ; Fang, Haitian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-85abc33021e6cabc13e1cde58ee089fa657713e07b52656fe793512dc31fa68f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioreactors</topic><topic>CRISPR-Cas Systems</topic><topic>Cytidine - genetics</topic><topic>Cytidine - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>Gene Editing - methods</topic><topic>Metabolic Engineering</topic><topic>Mutagenesis</topic><topic>Plasma Gases</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiangjun</creatorcontrib><creatorcontrib>Liu, Lu</creatorcontrib><creatorcontrib>Ma, Cong</creatorcontrib><creatorcontrib>Zhang, Haojie</creatorcontrib><creatorcontrib>Liu, Huiyan</creatorcontrib><creatorcontrib>Fang, Haitian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiangjun</au><au>Liu, Lu</au><au>Ma, Cong</au><au>Zhang, Haojie</au><au>Liu, Huiyan</au><au>Fang, Haitian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>135</volume><issue>6</issue><issn>1365-2672</issn><eissn>1365-2672</eissn><abstract>Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. A mutant E. coli NXBG-11-F34 with high tolerance to uridine monophosphate structural analogs and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high-throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield, and productivity of cytidine fermented in a 5 l bioreactor were 15.7 g l-1, 0.164 g g-1, and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly. ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.</abstract><cop>England</cop><pmid>38830792</pmid><doi>10.1093/jambio/lxae133</doi><orcidid>https://orcid.org/0000-0003-3153-0648</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1365-2672
ispartof Journal of applied microbiology, 2024-06, Vol.135 (6)
issn 1365-2672
1365-2672
language eng
recordid cdi_proquest_miscellaneous_3064580727
source MEDLINE; Oxford University Press Journals All Titles (1996-Current)
subjects Bioreactors
CRISPR-Cas Systems
Cytidine - genetics
Cytidine - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Fermentation
Gene Editing - methods
Metabolic Engineering
Mutagenesis
Plasma Gases
Temperature
title Improving the level of the cytidine biosynthesis in E. coli through atmospheric room temperature plasma mutagenesis and metabolic engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20level%20of%20the%20cytidine%20biosynthesis%20in%20E.%20coli%20through%20atmospheric%20room%20temperature%20plasma%20mutagenesis%20and%20metabolic%20engineering&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Zhang,%20Xiangjun&rft.date=2024-06-03&rft.volume=135&rft.issue=6&rft.issn=1365-2672&rft.eissn=1365-2672&rft_id=info:doi/10.1093/jambio/lxae133&rft_dat=%3Cproquest_cross%3E3064580727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064580727&rft_id=info:pmid/38830792&rfr_iscdi=true