Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data

In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2024-09, Vol.71 (9), p.1106-1119
Hauptverfasser: McKnight, Shaun, Tunukovic, Vedran, Gareth Pierce, S., Mohseni, Ehsan, Pyle, Richard, MacLeod, Charles N., O'Hare, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1119
container_issue 9
container_start_page 1106
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 71
creator McKnight, Shaun
Tunukovic, Vedran
Gareth Pierce, S.
Mohseni, Ehsan
Pyle, Richard
MacLeod, Charles N.
O'Hare, Tom
description In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.
doi_str_mv 10.1109/TUFFC.2024.3408314
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3064580333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10545537</ieee_id><sourcerecordid>3064580333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-5660f0f8907ceef6dcd35d285252f8b06f58bce8a76bd80b135676201a80b1b13</originalsourceid><addsrcrecordid>eNpNkcFu1DAQhi0EosvCCyCEfOSSZWzHicOtynah0qo9tHuOHGdcGSV2sLOV6Ev0lZuwC2Iuoxl9_y_N_IR8ZLBhDKqv94fdrt5w4PlG5KAEy1-RFZNcZqqS8jVZgVIyE8DggrxL6ScAy_OKvyUXQilelZKtyPNl96i9cf6B1jq2wdOdazHSOgxjSG5Ceu3TiGZywX-jW8SR7lFHPwuyK6_bHrt5a2eA7oPRvXvSC0q17-ide1p8H52mItvSQ3aDE73DhwH9dKKCpYd-ijoF7wzd6km_J2-s7hN-OPc1Oeyu7usf2f72-3V9uc8Mz6spk0UBFqyqoDSItuhMJ2TH1Xw8t6qFwkrVGlS6LNpOQcuELMqCA9PLMI9r8uXkO8bw64hpagaXDPa99hiOqRFQ5FKBmGtN-Ak1MaQU0TZjdIOOvxsGzRJE8yeIZgmiOQcxiz6f_Y_tgN0_yd_Pz8CnE-AQ8T9HmUspSvEC0UGNLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064580333</pqid></control><display><type>article</type><title>Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data</title><source>IEEE Xplore Digital Library</source><creator>McKnight, Shaun ; Tunukovic, Vedran ; Gareth Pierce, S. ; Mohseni, Ehsan ; Pyle, Richard ; MacLeod, Charles N. ; O'Hare, Tom</creator><creatorcontrib>McKnight, Shaun ; Tunukovic, Vedran ; Gareth Pierce, S. ; Mohseni, Ehsan ; Pyle, Richard ; MacLeod, Charles N. ; O'Hare, Tom</creatorcontrib><description>In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.</description><identifier>ISSN: 0885-3010</identifier><identifier>ISSN: 1525-8955</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2024.3408314</identifier><identifier>PMID: 38829751</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3-D ; Acoustics ; Arrays ; composite ; deep learning (DL) ; defect characterization ; Inspection ; Location awareness ; Phased arrays ; segmentation ; Testing ; Three-dimensional displays ; U-Net ; ultrasonic testing (UT)</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-09, Vol.71 (9), p.1106-1119</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-5660f0f8907ceef6dcd35d285252f8b06f58bce8a76bd80b135676201a80b1b13</cites><orcidid>0000-0003-4364-9769 ; 0000-0002-3904-5092 ; 0000-0003-0312-8766 ; 0000-0002-3102-9098 ; 0009-0007-1769-487X ; 0000-0002-0819-6592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10545537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10545537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38829751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKnight, Shaun</creatorcontrib><creatorcontrib>Tunukovic, Vedran</creatorcontrib><creatorcontrib>Gareth Pierce, S.</creatorcontrib><creatorcontrib>Mohseni, Ehsan</creatorcontrib><creatorcontrib>Pyle, Richard</creatorcontrib><creatorcontrib>MacLeod, Charles N.</creatorcontrib><creatorcontrib>O'Hare, Tom</creatorcontrib><title>Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.</description><subject>3-D</subject><subject>Acoustics</subject><subject>Arrays</subject><subject>composite</subject><subject>deep learning (DL)</subject><subject>defect characterization</subject><subject>Inspection</subject><subject>Location awareness</subject><subject>Phased arrays</subject><subject>segmentation</subject><subject>Testing</subject><subject>Three-dimensional displays</subject><subject>U-Net</subject><subject>ultrasonic testing (UT)</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkcFu1DAQhi0EosvCCyCEfOSSZWzHicOtynah0qo9tHuOHGdcGSV2sLOV6Ev0lZuwC2Iuoxl9_y_N_IR8ZLBhDKqv94fdrt5w4PlG5KAEy1-RFZNcZqqS8jVZgVIyE8DggrxL6ScAy_OKvyUXQilelZKtyPNl96i9cf6B1jq2wdOdazHSOgxjSG5Ceu3TiGZywX-jW8SR7lFHPwuyK6_bHrt5a2eA7oPRvXvSC0q17-ide1p8H52mItvSQ3aDE73DhwH9dKKCpYd-ijoF7wzd6km_J2-s7hN-OPc1Oeyu7usf2f72-3V9uc8Mz6spk0UBFqyqoDSItuhMJ2TH1Xw8t6qFwkrVGlS6LNpOQcuELMqCA9PLMI9r8uXkO8bw64hpagaXDPa99hiOqRFQ5FKBmGtN-Ak1MaQU0TZjdIOOvxsGzRJE8yeIZgmiOQcxiz6f_Y_tgN0_yd_Pz8CnE-AQ8T9HmUspSvEC0UGNLg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>McKnight, Shaun</creator><creator>Tunukovic, Vedran</creator><creator>Gareth Pierce, S.</creator><creator>Mohseni, Ehsan</creator><creator>Pyle, Richard</creator><creator>MacLeod, Charles N.</creator><creator>O'Hare, Tom</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4364-9769</orcidid><orcidid>https://orcid.org/0000-0002-3904-5092</orcidid><orcidid>https://orcid.org/0000-0003-0312-8766</orcidid><orcidid>https://orcid.org/0000-0002-3102-9098</orcidid><orcidid>https://orcid.org/0009-0007-1769-487X</orcidid><orcidid>https://orcid.org/0000-0002-0819-6592</orcidid></search><sort><creationdate>202409</creationdate><title>Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data</title><author>McKnight, Shaun ; Tunukovic, Vedran ; Gareth Pierce, S. ; Mohseni, Ehsan ; Pyle, Richard ; MacLeod, Charles N. ; O'Hare, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-5660f0f8907ceef6dcd35d285252f8b06f58bce8a76bd80b135676201a80b1b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D</topic><topic>Acoustics</topic><topic>Arrays</topic><topic>composite</topic><topic>deep learning (DL)</topic><topic>defect characterization</topic><topic>Inspection</topic><topic>Location awareness</topic><topic>Phased arrays</topic><topic>segmentation</topic><topic>Testing</topic><topic>Three-dimensional displays</topic><topic>U-Net</topic><topic>ultrasonic testing (UT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKnight, Shaun</creatorcontrib><creatorcontrib>Tunukovic, Vedran</creatorcontrib><creatorcontrib>Gareth Pierce, S.</creatorcontrib><creatorcontrib>Mohseni, Ehsan</creatorcontrib><creatorcontrib>Pyle, Richard</creatorcontrib><creatorcontrib>MacLeod, Charles N.</creatorcontrib><creatorcontrib>O'Hare, Tom</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore Digital Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McKnight, Shaun</au><au>Tunukovic, Vedran</au><au>Gareth Pierce, S.</au><au>Mohseni, Ehsan</au><au>Pyle, Richard</au><au>MacLeod, Charles N.</au><au>O'Hare, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2024-09</date><risdate>2024</risdate><volume>71</volume><issue>9</issue><spage>1106</spage><epage>1119</epage><pages>1106-1119</pages><issn>0885-3010</issn><issn>1525-8955</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38829751</pmid><doi>10.1109/TUFFC.2024.3408314</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4364-9769</orcidid><orcidid>https://orcid.org/0000-0002-3904-5092</orcidid><orcidid>https://orcid.org/0000-0003-0312-8766</orcidid><orcidid>https://orcid.org/0000-0002-3102-9098</orcidid><orcidid>https://orcid.org/0009-0007-1769-487X</orcidid><orcidid>https://orcid.org/0000-0002-0819-6592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-09, Vol.71 (9), p.1106-1119
issn 0885-3010
1525-8955
1525-8955
language eng
recordid cdi_proquest_miscellaneous_3064580333
source IEEE Xplore Digital Library
subjects 3-D
Acoustics
Arrays
composite
deep learning (DL)
defect characterization
Inspection
Location awareness
Phased arrays
segmentation
Testing
Three-dimensional displays
U-Net
ultrasonic testing (UT)
title Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Carbon%20Fiber%20Composite%20Inspection:%20Deep%20Learning-Enabled%20Defect%20Localization%20and%20Sizing%20via%203-D%20U-Net%20Segmentation%20of%20Ultrasonic%20Data&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=McKnight,%20Shaun&rft.date=2024-09&rft.volume=71&rft.issue=9&rft.spage=1106&rft.epage=1119&rft.pages=1106-1119&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2024.3408314&rft_dat=%3Cproquest_RIE%3E3064580333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064580333&rft_id=info:pmid/38829751&rft_ieee_id=10545537&rfr_iscdi=true