Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data
In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2024-09, Vol.71 (9), p.1106-1119 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1119 |
---|---|
container_issue | 9 |
container_start_page | 1106 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 71 |
creator | McKnight, Shaun Tunukovic, Vedran Gareth Pierce, S. Mohseni, Ehsan Pyle, Richard MacLeod, Charles N. O'Hare, Tom |
description | In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators. |
doi_str_mv | 10.1109/TUFFC.2024.3408314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_3064580333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10545537</ieee_id><sourcerecordid>3064580333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-5660f0f8907ceef6dcd35d285252f8b06f58bce8a76bd80b135676201a80b1b13</originalsourceid><addsrcrecordid>eNpNkcFu1DAQhi0EosvCCyCEfOSSZWzHicOtynah0qo9tHuOHGdcGSV2sLOV6Ev0lZuwC2Iuoxl9_y_N_IR8ZLBhDKqv94fdrt5w4PlG5KAEy1-RFZNcZqqS8jVZgVIyE8DggrxL6ScAy_OKvyUXQilelZKtyPNl96i9cf6B1jq2wdOdazHSOgxjSG5Ceu3TiGZywX-jW8SR7lFHPwuyK6_bHrt5a2eA7oPRvXvSC0q17-ide1p8H52mItvSQ3aDE73DhwH9dKKCpYd-ijoF7wzd6km_J2-s7hN-OPc1Oeyu7usf2f72-3V9uc8Mz6spk0UBFqyqoDSItuhMJ2TH1Xw8t6qFwkrVGlS6LNpOQcuELMqCA9PLMI9r8uXkO8bw64hpagaXDPa99hiOqRFQ5FKBmGtN-Ak1MaQU0TZjdIOOvxsGzRJE8yeIZgmiOQcxiz6f_Y_tgN0_yd_Pz8CnE-AQ8T9HmUspSvEC0UGNLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064580333</pqid></control><display><type>article</type><title>Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data</title><source>IEEE Xplore Digital Library</source><creator>McKnight, Shaun ; Tunukovic, Vedran ; Gareth Pierce, S. ; Mohseni, Ehsan ; Pyle, Richard ; MacLeod, Charles N. ; O'Hare, Tom</creator><creatorcontrib>McKnight, Shaun ; Tunukovic, Vedran ; Gareth Pierce, S. ; Mohseni, Ehsan ; Pyle, Richard ; MacLeod, Charles N. ; O'Hare, Tom</creatorcontrib><description>In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.</description><identifier>ISSN: 0885-3010</identifier><identifier>ISSN: 1525-8955</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2024.3408314</identifier><identifier>PMID: 38829751</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>3-D ; Acoustics ; Arrays ; composite ; deep learning (DL) ; defect characterization ; Inspection ; Location awareness ; Phased arrays ; segmentation ; Testing ; Three-dimensional displays ; U-Net ; ultrasonic testing (UT)</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-09, Vol.71 (9), p.1106-1119</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-5660f0f8907ceef6dcd35d285252f8b06f58bce8a76bd80b135676201a80b1b13</cites><orcidid>0000-0003-4364-9769 ; 0000-0002-3904-5092 ; 0000-0003-0312-8766 ; 0000-0002-3102-9098 ; 0009-0007-1769-487X ; 0000-0002-0819-6592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10545537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10545537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38829751$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKnight, Shaun</creatorcontrib><creatorcontrib>Tunukovic, Vedran</creatorcontrib><creatorcontrib>Gareth Pierce, S.</creatorcontrib><creatorcontrib>Mohseni, Ehsan</creatorcontrib><creatorcontrib>Pyle, Richard</creatorcontrib><creatorcontrib>MacLeod, Charles N.</creatorcontrib><creatorcontrib>O'Hare, Tom</creatorcontrib><title>Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.</description><subject>3-D</subject><subject>Acoustics</subject><subject>Arrays</subject><subject>composite</subject><subject>deep learning (DL)</subject><subject>defect characterization</subject><subject>Inspection</subject><subject>Location awareness</subject><subject>Phased arrays</subject><subject>segmentation</subject><subject>Testing</subject><subject>Three-dimensional displays</subject><subject>U-Net</subject><subject>ultrasonic testing (UT)</subject><issn>0885-3010</issn><issn>1525-8955</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkcFu1DAQhi0EosvCCyCEfOSSZWzHicOtynah0qo9tHuOHGdcGSV2sLOV6Ev0lZuwC2Iuoxl9_y_N_IR8ZLBhDKqv94fdrt5w4PlG5KAEy1-RFZNcZqqS8jVZgVIyE8DggrxL6ScAy_OKvyUXQilelZKtyPNl96i9cf6B1jq2wdOdazHSOgxjSG5Ceu3TiGZywX-jW8SR7lFHPwuyK6_bHrt5a2eA7oPRvXvSC0q17-ide1p8H52mItvSQ3aDE73DhwH9dKKCpYd-ijoF7wzd6km_J2-s7hN-OPc1Oeyu7usf2f72-3V9uc8Mz6spk0UBFqyqoDSItuhMJ2TH1Xw8t6qFwkrVGlS6LNpOQcuELMqCA9PLMI9r8uXkO8bw64hpagaXDPa99hiOqRFQ5FKBmGtN-Ak1MaQU0TZjdIOOvxsGzRJE8yeIZgmiOQcxiz6f_Y_tgN0_yd_Pz8CnE-AQ8T9HmUspSvEC0UGNLg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>McKnight, Shaun</creator><creator>Tunukovic, Vedran</creator><creator>Gareth Pierce, S.</creator><creator>Mohseni, Ehsan</creator><creator>Pyle, Richard</creator><creator>MacLeod, Charles N.</creator><creator>O'Hare, Tom</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4364-9769</orcidid><orcidid>https://orcid.org/0000-0002-3904-5092</orcidid><orcidid>https://orcid.org/0000-0003-0312-8766</orcidid><orcidid>https://orcid.org/0000-0002-3102-9098</orcidid><orcidid>https://orcid.org/0009-0007-1769-487X</orcidid><orcidid>https://orcid.org/0000-0002-0819-6592</orcidid></search><sort><creationdate>202409</creationdate><title>Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data</title><author>McKnight, Shaun ; Tunukovic, Vedran ; Gareth Pierce, S. ; Mohseni, Ehsan ; Pyle, Richard ; MacLeod, Charles N. ; O'Hare, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-5660f0f8907ceef6dcd35d285252f8b06f58bce8a76bd80b135676201a80b1b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D</topic><topic>Acoustics</topic><topic>Arrays</topic><topic>composite</topic><topic>deep learning (DL)</topic><topic>defect characterization</topic><topic>Inspection</topic><topic>Location awareness</topic><topic>Phased arrays</topic><topic>segmentation</topic><topic>Testing</topic><topic>Three-dimensional displays</topic><topic>U-Net</topic><topic>ultrasonic testing (UT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKnight, Shaun</creatorcontrib><creatorcontrib>Tunukovic, Vedran</creatorcontrib><creatorcontrib>Gareth Pierce, S.</creatorcontrib><creatorcontrib>Mohseni, Ehsan</creatorcontrib><creatorcontrib>Pyle, Richard</creatorcontrib><creatorcontrib>MacLeod, Charles N.</creatorcontrib><creatorcontrib>O'Hare, Tom</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore Digital Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McKnight, Shaun</au><au>Tunukovic, Vedran</au><au>Gareth Pierce, S.</au><au>Mohseni, Ehsan</au><au>Pyle, Richard</au><au>MacLeod, Charles N.</au><au>O'Hare, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2024-09</date><risdate>2024</risdate><volume>71</volume><issue>9</issue><spage>1106</spage><epage>1119</epage><pages>1106-1119</pages><issn>0885-3010</issn><issn>1525-8955</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>In nondestructive evaluation (NDE), accurately characterizing defects within components relies on accurate sizing and localization to evaluate the severity or criticality of defects. This study presents for the first time a deep learning (DL) methodology using 3-D U-Net to localize and size defects in carbon fiber reinforced polymer (CFRP) composites through volumetric segmentation of ultrasonic testing (UT) data. Using a previously developed approach, synthetic training data, closely representative of experimental data, was used for the automatic generation of ground truth segmentation masks. The model's performance was compared to the conventional amplitude 6 dB drop analysis method used in the industry against ultrasonic defect responses from 40 defects fabricated in CFRP components. The results showed good agreement with the 6 dB drop method for in-plane localization and excellent through-thickness localization, with mean absolute errors (MAEs) of 0.57 and 0.08 mm, respectively. Initial sizing results consistently oversized defects with a 55% higher mean average error than the 6 dB drop method. However, when a correction factor was applied to account for variation between the experimental and synthetic domains, the final sizing accuracy resulted in a 35% reduction in MAE compared to the 6 dB drop technique. By working with volumetric ultrasonic data (as opposed to 2-D images), this approach reduces preprocessing (such as signal gating) and allows for the generation of 3-D defect masks which can be used for the generation of computer-aided design files; greatly reducing the qualification reporting burden of NDE operators.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38829751</pmid><doi>10.1109/TUFFC.2024.3408314</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4364-9769</orcidid><orcidid>https://orcid.org/0000-0002-3904-5092</orcidid><orcidid>https://orcid.org/0000-0003-0312-8766</orcidid><orcidid>https://orcid.org/0000-0002-3102-9098</orcidid><orcidid>https://orcid.org/0009-0007-1769-487X</orcidid><orcidid>https://orcid.org/0000-0002-0819-6592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2024-09, Vol.71 (9), p.1106-1119 |
issn | 0885-3010 1525-8955 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_3064580333 |
source | IEEE Xplore Digital Library |
subjects | 3-D Acoustics Arrays composite deep learning (DL) defect characterization Inspection Location awareness Phased arrays segmentation Testing Three-dimensional displays U-Net ultrasonic testing (UT) |
title | Advancing Carbon Fiber Composite Inspection: Deep Learning-Enabled Defect Localization and Sizing via 3-D U-Net Segmentation of Ultrasonic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Carbon%20Fiber%20Composite%20Inspection:%20Deep%20Learning-Enabled%20Defect%20Localization%20and%20Sizing%20via%203-D%20U-Net%20Segmentation%20of%20Ultrasonic%20Data&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=McKnight,%20Shaun&rft.date=2024-09&rft.volume=71&rft.issue=9&rft.spage=1106&rft.epage=1119&rft.pages=1106-1119&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2024.3408314&rft_dat=%3Cproquest_RIE%3E3064580333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064580333&rft_id=info:pmid/38829751&rft_ieee_id=10545537&rfr_iscdi=true |