Integrating machine learning with α-SAS for enhanced structural analysis in small-angle scattering: applications in biological and artificial macromolecular complexes

Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS, emphasizing its application in studying complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2024-06, Vol.47 (6), p.39, Article 39
1. Verfasser: Anitas, Eugen Mircea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 39
container_title The European physical journal. E, Soft matter and biological physics
container_volume 47
creator Anitas, Eugen Mircea
description Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS, emphasizing its application in studying complex biological systems and the challenges associated with sample preparation and data analysis. We highlight the use of neutron-scattering properties of hydrogen isotopes and isotopic labeling in SANS for probing structures within multi-subunit complexes, employing techniques like contrast variation (CV) for detailed structural analysis. However, traditional SAS analysis methods, such as Guinier and Kratky plots, are limited by their partial use of available data and inability to operate without substantial a priori knowledge of the sample’s chemical composition. To overcome these limitations, we introduce a novel approach integrating α -SAS, a computational method for simulating SANS with CV, with machine learning (ML). This approach enables the accurate prediction of scattering contrast in multicomponent macromolecular complexes, reducing the need for extensive sample preparation and computational resources. α -SAS, utilizing Monte Carlo methods, generates comprehensive datasets from which structural invariants can be extracted, enhancing our understanding of the macromolecular form factor in dilute systems. The paper demonstrates the effectiveness of this integrated approach through its application to two case studies: Janus particles, an artificial structure with a known SAS intensity and contrast, and a biological system involving RNA polymerase II in complex with Rtt103. These examples illustrate the method’s capability to provide detailed structural insights, showcasing its potential as a powerful tool for advanced SAS analysis in structural biology. Graphic Abstract
doi_str_mv 10.1140/epje/s10189-024-00435-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3064580256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064182267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-fe1cd1982955dce3746a19732eb9aea0377e471a936604a2447c4972eafe1b013</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhSMEoqXwCmCJDZtQ_yVO2FUVhUqVWBQkdtZcZ-69vnLsYDuCPhFrXqTPhNOUIrFhZc_oO0czc6rqFaNvGZP0FKcDniZGWdfXlMuaUimaun1UHTPe87rrm6-PH_6SHVXPUjpQSotWPK2ORNcJxpg6rn5e-oy7CNn6HRnB7K1H4hCiXxrfbd6T21_19dk12YZI0O_BGxxIynE2eY7gCHhwN8kmYj1JIzhXg985JMlAzhiLzTsC0-RsqW3wd9zGBhd2pbPIBwIx2601tpRlhBjG4NDMDiIxYZwc_sD0vHqyBZfwxf17Un25eP_5_GN99enD5fnZVW142-Z6i8wMrO943zSDQaFkC6xXguOmBwQqlEKpGPSibakELqUyslccoSg3lImT6s3qO8XwbcaU9WiTQefAY5iTFrSVTUd50xb09T_oIcyxXGOlWMd5qwqlVqrslVLErZ6iHSHeaEb1kqVestRrlrpkqe-y1Iv_y3v_eTPi8KD7E14BuhVI03JmjH8H-J_3b8a-sgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064182267</pqid></control><display><type>article</type><title>Integrating machine learning with α-SAS for enhanced structural analysis in small-angle scattering: applications in biological and artificial macromolecular complexes</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Anitas, Eugen Mircea</creator><creatorcontrib>Anitas, Eugen Mircea</creatorcontrib><description>Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS, emphasizing its application in studying complex biological systems and the challenges associated with sample preparation and data analysis. We highlight the use of neutron-scattering properties of hydrogen isotopes and isotopic labeling in SANS for probing structures within multi-subunit complexes, employing techniques like contrast variation (CV) for detailed structural analysis. However, traditional SAS analysis methods, such as Guinier and Kratky plots, are limited by their partial use of available data and inability to operate without substantial a priori knowledge of the sample’s chemical composition. To overcome these limitations, we introduce a novel approach integrating α -SAS, a computational method for simulating SANS with CV, with machine learning (ML). This approach enables the accurate prediction of scattering contrast in multicomponent macromolecular complexes, reducing the need for extensive sample preparation and computational resources. α -SAS, utilizing Monte Carlo methods, generates comprehensive datasets from which structural invariants can be extracted, enhancing our understanding of the macromolecular form factor in dilute systems. The paper demonstrates the effectiveness of this integrated approach through its application to two case studies: Janus particles, an artificial structure with a known SAS intensity and contrast, and a biological system involving RNA polymerase II in complex with Rtt103. These examples illustrate the method’s capability to provide detailed structural insights, showcasing its potential as a powerful tool for advanced SAS analysis in structural biology. Graphic Abstract</description><identifier>ISSN: 1292-8941</identifier><identifier>ISSN: 1292-895X</identifier><identifier>EISSN: 1292-895X</identifier><identifier>DOI: 10.1140/epje/s10189-024-00435-6</identifier><identifier>PMID: 38831117</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biological and Medical Physics ; Biophysics ; Chemical composition ; Complex Fluids and Microfluidics ; Complex Systems ; Data analysis ; Form factors ; Hydrogen isotopes ; Isotopic labeling ; Machine Learning ; Macromolecular Substances - chemistry ; Monte Carlo Method ; Monte Carlo simulation ; Nanotechnology ; Neutron Diffraction ; Physics ; Physics and Astronomy ; Polymer Sciences ; Regular Article - Living Systems ; RNA polymerase ; RNA polymerase II ; Scattering ; Scattering, Small Angle ; Soft and Granular Matter ; Structural analysis ; Surfaces and Interfaces ; System effectiveness ; Thin Films ; X-Ray Diffraction</subject><ispartof>The European physical journal. E, Soft matter and biological physics, 2024-06, Vol.47 (6), p.39, Article 39</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-fe1cd1982955dce3746a19732eb9aea0377e471a936604a2447c4972eafe1b013</cites><orcidid>0000-0003-2693-1383</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epje/s10189-024-00435-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epje/s10189-024-00435-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38831117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anitas, Eugen Mircea</creatorcontrib><title>Integrating machine learning with α-SAS for enhanced structural analysis in small-angle scattering: applications in biological and artificial macromolecular complexes</title><title>The European physical journal. E, Soft matter and biological physics</title><addtitle>Eur. Phys. J. E</addtitle><addtitle>Eur Phys J E Soft Matter</addtitle><description>Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS, emphasizing its application in studying complex biological systems and the challenges associated with sample preparation and data analysis. We highlight the use of neutron-scattering properties of hydrogen isotopes and isotopic labeling in SANS for probing structures within multi-subunit complexes, employing techniques like contrast variation (CV) for detailed structural analysis. However, traditional SAS analysis methods, such as Guinier and Kratky plots, are limited by their partial use of available data and inability to operate without substantial a priori knowledge of the sample’s chemical composition. To overcome these limitations, we introduce a novel approach integrating α -SAS, a computational method for simulating SANS with CV, with machine learning (ML). This approach enables the accurate prediction of scattering contrast in multicomponent macromolecular complexes, reducing the need for extensive sample preparation and computational resources. α -SAS, utilizing Monte Carlo methods, generates comprehensive datasets from which structural invariants can be extracted, enhancing our understanding of the macromolecular form factor in dilute systems. The paper demonstrates the effectiveness of this integrated approach through its application to two case studies: Janus particles, an artificial structure with a known SAS intensity and contrast, and a biological system involving RNA polymerase II in complex with Rtt103. These examples illustrate the method’s capability to provide detailed structural insights, showcasing its potential as a powerful tool for advanced SAS analysis in structural biology. Graphic Abstract</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Chemical composition</subject><subject>Complex Fluids and Microfluidics</subject><subject>Complex Systems</subject><subject>Data analysis</subject><subject>Form factors</subject><subject>Hydrogen isotopes</subject><subject>Isotopic labeling</subject><subject>Machine Learning</subject><subject>Macromolecular Substances - chemistry</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Nanotechnology</subject><subject>Neutron Diffraction</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer Sciences</subject><subject>Regular Article - Living Systems</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>Scattering</subject><subject>Scattering, Small Angle</subject><subject>Soft and Granular Matter</subject><subject>Structural analysis</subject><subject>Surfaces and Interfaces</subject><subject>System effectiveness</subject><subject>Thin Films</subject><subject>X-Ray Diffraction</subject><issn>1292-8941</issn><issn>1292-895X</issn><issn>1292-895X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1TAQhSMEoqXwCmCJDZtQ_yVO2FUVhUqVWBQkdtZcZ-69vnLsYDuCPhFrXqTPhNOUIrFhZc_oO0czc6rqFaNvGZP0FKcDniZGWdfXlMuaUimaun1UHTPe87rrm6-PH_6SHVXPUjpQSotWPK2ORNcJxpg6rn5e-oy7CNn6HRnB7K1H4hCiXxrfbd6T21_19dk12YZI0O_BGxxIynE2eY7gCHhwN8kmYj1JIzhXg985JMlAzhiLzTsC0-RsqW3wd9zGBhd2pbPIBwIx2601tpRlhBjG4NDMDiIxYZwc_sD0vHqyBZfwxf17Un25eP_5_GN99enD5fnZVW142-Z6i8wMrO943zSDQaFkC6xXguOmBwQqlEKpGPSibakELqUyslccoSg3lImT6s3qO8XwbcaU9WiTQefAY5iTFrSVTUd50xb09T_oIcyxXGOlWMd5qwqlVqrslVLErZ6iHSHeaEb1kqVestRrlrpkqe-y1Iv_y3v_eTPi8KD7E14BuhVI03JmjH8H-J_3b8a-sgI</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Anitas, Eugen Mircea</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2693-1383</orcidid></search><sort><creationdate>20240603</creationdate><title>Integrating machine learning with α-SAS for enhanced structural analysis in small-angle scattering: applications in biological and artificial macromolecular complexes</title><author>Anitas, Eugen Mircea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-fe1cd1982955dce3746a19732eb9aea0377e471a936604a2447c4972eafe1b013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Chemical composition</topic><topic>Complex Fluids and Microfluidics</topic><topic>Complex Systems</topic><topic>Data analysis</topic><topic>Form factors</topic><topic>Hydrogen isotopes</topic><topic>Isotopic labeling</topic><topic>Machine Learning</topic><topic>Macromolecular Substances - chemistry</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Nanotechnology</topic><topic>Neutron Diffraction</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer Sciences</topic><topic>Regular Article - Living Systems</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>Scattering</topic><topic>Scattering, Small Angle</topic><topic>Soft and Granular Matter</topic><topic>Structural analysis</topic><topic>Surfaces and Interfaces</topic><topic>System effectiveness</topic><topic>Thin Films</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anitas, Eugen Mircea</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anitas, Eugen Mircea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating machine learning with α-SAS for enhanced structural analysis in small-angle scattering: applications in biological and artificial macromolecular complexes</atitle><jtitle>The European physical journal. E, Soft matter and biological physics</jtitle><stitle>Eur. Phys. J. E</stitle><addtitle>Eur Phys J E Soft Matter</addtitle><date>2024-06-03</date><risdate>2024</risdate><volume>47</volume><issue>6</issue><spage>39</spage><pages>39-</pages><artnum>39</artnum><issn>1292-8941</issn><issn>1292-895X</issn><eissn>1292-895X</eissn><abstract>Small-Angle Scattering (SAS), encompassing both X-ray (SAXS) and Neutron (SANS) techniques, is a crucial tool for structural analysis at the nanoscale, particularly in the realm of biological macromolecules. This paper explores the intricacies of SAS, emphasizing its application in studying complex biological systems and the challenges associated with sample preparation and data analysis. We highlight the use of neutron-scattering properties of hydrogen isotopes and isotopic labeling in SANS for probing structures within multi-subunit complexes, employing techniques like contrast variation (CV) for detailed structural analysis. However, traditional SAS analysis methods, such as Guinier and Kratky plots, are limited by their partial use of available data and inability to operate without substantial a priori knowledge of the sample’s chemical composition. To overcome these limitations, we introduce a novel approach integrating α -SAS, a computational method for simulating SANS with CV, with machine learning (ML). This approach enables the accurate prediction of scattering contrast in multicomponent macromolecular complexes, reducing the need for extensive sample preparation and computational resources. α -SAS, utilizing Monte Carlo methods, generates comprehensive datasets from which structural invariants can be extracted, enhancing our understanding of the macromolecular form factor in dilute systems. The paper demonstrates the effectiveness of this integrated approach through its application to two case studies: Janus particles, an artificial structure with a known SAS intensity and contrast, and a biological system involving RNA polymerase II in complex with Rtt103. These examples illustrate the method’s capability to provide detailed structural insights, showcasing its potential as a powerful tool for advanced SAS analysis in structural biology. Graphic Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38831117</pmid><doi>10.1140/epje/s10189-024-00435-6</doi><orcidid>https://orcid.org/0000-0003-2693-1383</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1292-8941
ispartof The European physical journal. E, Soft matter and biological physics, 2024-06, Vol.47 (6), p.39, Article 39
issn 1292-8941
1292-895X
1292-895X
language eng
recordid cdi_proquest_miscellaneous_3064580256
source MEDLINE; SpringerNature Journals
subjects Biological and Medical Physics
Biophysics
Chemical composition
Complex Fluids and Microfluidics
Complex Systems
Data analysis
Form factors
Hydrogen isotopes
Isotopic labeling
Machine Learning
Macromolecular Substances - chemistry
Monte Carlo Method
Monte Carlo simulation
Nanotechnology
Neutron Diffraction
Physics
Physics and Astronomy
Polymer Sciences
Regular Article - Living Systems
RNA polymerase
RNA polymerase II
Scattering
Scattering, Small Angle
Soft and Granular Matter
Structural analysis
Surfaces and Interfaces
System effectiveness
Thin Films
X-Ray Diffraction
title Integrating machine learning with α-SAS for enhanced structural analysis in small-angle scattering: applications in biological and artificial macromolecular complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20machine%20learning%20with%20%CE%B1-SAS%20for%20enhanced%20structural%20analysis%20in%20small-angle%20scattering:%20applications%20in%20biological%20and%20artificial%20macromolecular%20complexes&rft.jtitle=The%20European%20physical%20journal.%20E,%20Soft%20matter%20and%20biological%20physics&rft.au=Anitas,%20Eugen%20Mircea&rft.date=2024-06-03&rft.volume=47&rft.issue=6&rft.spage=39&rft.pages=39-&rft.artnum=39&rft.issn=1292-8941&rft.eissn=1292-895X&rft_id=info:doi/10.1140/epje/s10189-024-00435-6&rft_dat=%3Cproquest_cross%3E3064182267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064182267&rft_id=info:pmid/38831117&rfr_iscdi=true