A Comparison of Google and ChatGPT for Automatic Generation of Health-related Multiple-choice Questions

Critical to producing accessible content is an understanding of what characteristics affect understanding and comprehension. To answer this question, we are producing a large corpus of health-related texts with associated questions that can be read or listened to by study participants to measure the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA Summits on Translational Science proceedings 2024, Vol.2024, p.679
Hauptverfasser: Song, Vivien, Kauchak, David, Hamre, John, Morgenstein, Nick, Leroy, Gondy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 679
container_title AMIA Summits on Translational Science proceedings
container_volume 2024
creator Song, Vivien
Kauchak, David
Hamre, John
Morgenstein, Nick
Leroy, Gondy
description Critical to producing accessible content is an understanding of what characteristics affect understanding and comprehension. To answer this question, we are producing a large corpus of health-related texts with associated questions that can be read or listened to by study participants to measure the difficulty of the underlying content, which can later be used to better understand text difficulty and user comprehension. In this paper, we examine methods for automatically generating multiple-choice questions using Google's related questions and ChatGPT. Overall, we find both algorithms generate reasonable questions that are complementary; ChatGPT questions are more similar to the snippet while Google related-search questions have more lexical variation.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3064139713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064139713</sourcerecordid><originalsourceid>FETCH-LOGICAL-p564-4c115d4975e8b3c147e8cac0d2ebef9917b6398e324321e1e64babc4642a5a063</originalsourceid><addsrcrecordid>eNpNkMFqg0AQhpfS0oQ0r1D22IvguuOqxyCtKaS0Be8yrmNiWV27q4e-fQ1JoXOZ7_DxD_PfsHUkYhlAqOTtP16xrfdf4TIAKovhnq1kmkaJELBmxx3PbT-i67wduG15Ye3REMeh4fkJp-Kj5K11fDdPtsep07yggdxCF31PaKZT4MjgRA1_m83UjYYCfbKdJv45kz-r_oHdtWg8ba97w8qX5zLfB4f34jXfHYIxVhCAFiJuIEtiSmupBSSUatRhE1FNbZaJpFYyS0lGICNBghTUWGtQEGGMy68b9nSJHZ39Pt-u-s5rMgYHsrOvZKhAyCwRclEfr-pc99RUo-t6dD_VXzfyF954YYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064139713</pqid></control><display><type>article</type><title>A Comparison of Google and ChatGPT for Automatic Generation of Health-related Multiple-choice Questions</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Song, Vivien ; Kauchak, David ; Hamre, John ; Morgenstein, Nick ; Leroy, Gondy</creator><creatorcontrib>Song, Vivien ; Kauchak, David ; Hamre, John ; Morgenstein, Nick ; Leroy, Gondy</creatorcontrib><description>Critical to producing accessible content is an understanding of what characteristics affect understanding and comprehension. To answer this question, we are producing a large corpus of health-related texts with associated questions that can be read or listened to by study participants to measure the difficulty of the underlying content, which can later be used to better understand text difficulty and user comprehension. In this paper, we examine methods for automatically generating multiple-choice questions using Google's related questions and ChatGPT. Overall, we find both algorithms generate reasonable questions that are complementary; ChatGPT questions are more similar to the snippet while Google related-search questions have more lexical variation.</description><identifier>ISSN: 2153-4063</identifier><identifier>EISSN: 2153-4063</identifier><identifier>PMID: 38827114</identifier><language>eng</language><publisher>United States</publisher><ispartof>AMIA Summits on Translational Science proceedings, 2024, Vol.2024, p.679</ispartof><rights>2024 AMIA - All rights reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4023</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38827114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Vivien</creatorcontrib><creatorcontrib>Kauchak, David</creatorcontrib><creatorcontrib>Hamre, John</creatorcontrib><creatorcontrib>Morgenstein, Nick</creatorcontrib><creatorcontrib>Leroy, Gondy</creatorcontrib><title>A Comparison of Google and ChatGPT for Automatic Generation of Health-related Multiple-choice Questions</title><title>AMIA Summits on Translational Science proceedings</title><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><description>Critical to producing accessible content is an understanding of what characteristics affect understanding and comprehension. To answer this question, we are producing a large corpus of health-related texts with associated questions that can be read or listened to by study participants to measure the difficulty of the underlying content, which can later be used to better understand text difficulty and user comprehension. In this paper, we examine methods for automatically generating multiple-choice questions using Google's related questions and ChatGPT. Overall, we find both algorithms generate reasonable questions that are complementary; ChatGPT questions are more similar to the snippet while Google related-search questions have more lexical variation.</description><issn>2153-4063</issn><issn>2153-4063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFqg0AQhpfS0oQ0r1D22IvguuOqxyCtKaS0Be8yrmNiWV27q4e-fQ1JoXOZ7_DxD_PfsHUkYhlAqOTtP16xrfdf4TIAKovhnq1kmkaJELBmxx3PbT-i67wduG15Ye3REMeh4fkJp-Kj5K11fDdPtsep07yggdxCF31PaKZT4MjgRA1_m83UjYYCfbKdJv45kz-r_oHdtWg8ba97w8qX5zLfB4f34jXfHYIxVhCAFiJuIEtiSmupBSSUatRhE1FNbZaJpFYyS0lGICNBghTUWGtQEGGMy68b9nSJHZ39Pt-u-s5rMgYHsrOvZKhAyCwRclEfr-pc99RUo-t6dD_VXzfyF954YYQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Song, Vivien</creator><creator>Kauchak, David</creator><creator>Hamre, John</creator><creator>Morgenstein, Nick</creator><creator>Leroy, Gondy</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2024</creationdate><title>A Comparison of Google and ChatGPT for Automatic Generation of Health-related Multiple-choice Questions</title><author>Song, Vivien ; Kauchak, David ; Hamre, John ; Morgenstein, Nick ; Leroy, Gondy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p564-4c115d4975e8b3c147e8cac0d2ebef9917b6398e324321e1e64babc4642a5a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Song, Vivien</creatorcontrib><creatorcontrib>Kauchak, David</creatorcontrib><creatorcontrib>Hamre, John</creatorcontrib><creatorcontrib>Morgenstein, Nick</creatorcontrib><creatorcontrib>Leroy, Gondy</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>AMIA Summits on Translational Science proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Vivien</au><au>Kauchak, David</au><au>Hamre, John</au><au>Morgenstein, Nick</au><au>Leroy, Gondy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Comparison of Google and ChatGPT for Automatic Generation of Health-related Multiple-choice Questions</atitle><jtitle>AMIA Summits on Translational Science proceedings</jtitle><addtitle>AMIA Jt Summits Transl Sci Proc</addtitle><date>2024</date><risdate>2024</risdate><volume>2024</volume><spage>679</spage><pages>679-</pages><issn>2153-4063</issn><eissn>2153-4063</eissn><abstract>Critical to producing accessible content is an understanding of what characteristics affect understanding and comprehension. To answer this question, we are producing a large corpus of health-related texts with associated questions that can be read or listened to by study participants to measure the difficulty of the underlying content, which can later be used to better understand text difficulty and user comprehension. In this paper, we examine methods for automatically generating multiple-choice questions using Google's related questions and ChatGPT. Overall, we find both algorithms generate reasonable questions that are complementary; ChatGPT questions are more similar to the snippet while Google related-search questions have more lexical variation.</abstract><cop>United States</cop><pmid>38827114</pmid></addata></record>
fulltext fulltext
identifier ISSN: 2153-4063
ispartof AMIA Summits on Translational Science proceedings, 2024, Vol.2024, p.679
issn 2153-4063
2153-4063
language eng
recordid cdi_proquest_miscellaneous_3064139713
source EZB-FREE-00999 freely available EZB journals; PubMed Central
title A Comparison of Google and ChatGPT for Automatic Generation of Health-related Multiple-choice Questions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Comparison%20of%20Google%20and%20ChatGPT%20for%20Automatic%20Generation%20of%20Health-related%20Multiple-choice%20Questions&rft.jtitle=AMIA%20Summits%20on%20Translational%20Science%20proceedings&rft.au=Song,%20Vivien&rft.date=2024&rft.volume=2024&rft.spage=679&rft.pages=679-&rft.issn=2153-4063&rft.eissn=2153-4063&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E3064139713%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064139713&rft_id=info:pmid/38827114&rfr_iscdi=true