Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion
Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the L...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2024-08, Vol.36 (32), p.e2405956-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | e2405956 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Luo, Jiawei Zhang, Jingchao Guo, Zhaoxin Liu, Zhedong Wang, Chunying Jiang, Haoran Zhang, Jinfeng Fan, Longlong Zhu, He Xu, Yunhua Liu, Rui Ding, Jia Chen, Yanan Hu, Wenbin |
description | Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.
This work employs ultrafast nonequilibrium high‐temperature shock technology to controllably introduce Li–Fe antisite defects and lattice strain into the lattice of LiFePO4. The unique multiscale coupling structure promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability. The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes. |
doi_str_mv | 10.1002/adma.202405956 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3063464841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090215275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2356-d5b25994546834c2b3d0b1ee409776eb0e5a6e4028f71462988c4ad2cb1af8753</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiYUmxHduJx6ilUCmIgTIxRI7jIFdJHGJHqBuPwDPyJLgUgcTCdLrT95_uPgDOMZphhMiVrFo5I4hQxATjB2CCGcERRYIdggkSMYsEp-kxOHFugxASHPEJeJrbsW9M9wyzzhtnvIYLXWvloewqmEvvjdJwrTtnGg0fvGnHRnrt4FKq3WTlrB9sbxTMzcfb-8p2cGHqenTGdqfgqJaN02ffdQoel9fr-W2U39-s5lkeKRIzHlWsJEwIyihPY6pIGVeoxFqHy5OE6xJpJnnoSFonmHIi0lRRWRFVYlmnCYun4HK_tx_sy6idL1rjlG4a2Wk7uiJGPKbhdYoDevEH3dhx6MJ1gRKIBGVfC2d7Sg3WuUHXRT-YVg7bAqNi57rYuS5-XIeA2Adeg5PtP3SRLe6y3-wnxn6Chg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090215275</pqid></control><display><type>article</type><title>Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Jiawei ; Zhang, Jingchao ; Guo, Zhaoxin ; Liu, Zhedong ; Wang, Chunying ; Jiang, Haoran ; Zhang, Jinfeng ; Fan, Longlong ; Zhu, He ; Xu, Yunhua ; Liu, Rui ; Ding, Jia ; Chen, Yanan ; Hu, Wenbin</creator><creatorcontrib>Luo, Jiawei ; Zhang, Jingchao ; Guo, Zhaoxin ; Liu, Zhedong ; Wang, Chunying ; Jiang, Haoran ; Zhang, Jinfeng ; Fan, Longlong ; Zhu, He ; Xu, Yunhua ; Liu, Rui ; Ding, Jia ; Chen, Yanan ; Hu, Wenbin</creatorcontrib><description>Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.
This work employs ultrafast nonequilibrium high‐temperature shock technology to controllably introduce Li–Fe antisite defects and lattice strain into the lattice of LiFePO4. The unique multiscale coupling structure promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability. The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202405956</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antisite defects ; Charging ; Coupling ; Diffusion barriers ; Diffusion rate ; fast charging ; First principles ; Ion diffusion ; Lattice design ; Lattice strain ; Li+ diffusion mechanism ; Lithium ions ; Li–Fe antisite defects ; nonequilibrium high‐temperature shock ; Tensile strain</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405956-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2356-d5b25994546834c2b3d0b1ee409776eb0e5a6e4028f71462988c4ad2cb1af8753</cites><orcidid>0000-0002-6346-6372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202405956$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202405956$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Luo, Jiawei</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Guo, Zhaoxin</creatorcontrib><creatorcontrib>Liu, Zhedong</creatorcontrib><creatorcontrib>Wang, Chunying</creatorcontrib><creatorcontrib>Jiang, Haoran</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Fan, Longlong</creatorcontrib><creatorcontrib>Zhu, He</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Ding, Jia</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><title>Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion</title><title>Advanced materials (Weinheim)</title><description>Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.
This work employs ultrafast nonequilibrium high‐temperature shock technology to controllably introduce Li–Fe antisite defects and lattice strain into the lattice of LiFePO4. The unique multiscale coupling structure promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability. The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.</description><subject>Antisite defects</subject><subject>Charging</subject><subject>Coupling</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>fast charging</subject><subject>First principles</subject><subject>Ion diffusion</subject><subject>Lattice design</subject><subject>Lattice strain</subject><subject>Li+ diffusion mechanism</subject><subject>Lithium ions</subject><subject>Li–Fe antisite defects</subject><subject>nonequilibrium high‐temperature shock</subject><subject>Tensile strain</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMltiYUmxHduJx6ilUCmIgTIxRI7jIFdJHGJHqBuPwDPyJLgUgcTCdLrT95_uPgDOMZphhMiVrFo5I4hQxATjB2CCGcERRYIdggkSMYsEp-kxOHFugxASHPEJeJrbsW9M9wyzzhtnvIYLXWvloewqmEvvjdJwrTtnGg0fvGnHRnrt4FKq3WTlrB9sbxTMzcfb-8p2cGHqenTGdqfgqJaN02ffdQoel9fr-W2U39-s5lkeKRIzHlWsJEwIyihPY6pIGVeoxFqHy5OE6xJpJnnoSFonmHIi0lRRWRFVYlmnCYun4HK_tx_sy6idL1rjlG4a2Wk7uiJGPKbhdYoDevEH3dhx6MJ1gRKIBGVfC2d7Sg3WuUHXRT-YVg7bAqNi57rYuS5-XIeA2Adeg5PtP3SRLe6y3-wnxn6Chg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Luo, Jiawei</creator><creator>Zhang, Jingchao</creator><creator>Guo, Zhaoxin</creator><creator>Liu, Zhedong</creator><creator>Wang, Chunying</creator><creator>Jiang, Haoran</creator><creator>Zhang, Jinfeng</creator><creator>Fan, Longlong</creator><creator>Zhu, He</creator><creator>Xu, Yunhua</creator><creator>Liu, Rui</creator><creator>Ding, Jia</creator><creator>Chen, Yanan</creator><creator>Hu, Wenbin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6346-6372</orcidid></search><sort><creationdate>20240801</creationdate><title>Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion</title><author>Luo, Jiawei ; Zhang, Jingchao ; Guo, Zhaoxin ; Liu, Zhedong ; Wang, Chunying ; Jiang, Haoran ; Zhang, Jinfeng ; Fan, Longlong ; Zhu, He ; Xu, Yunhua ; Liu, Rui ; Ding, Jia ; Chen, Yanan ; Hu, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2356-d5b25994546834c2b3d0b1ee409776eb0e5a6e4028f71462988c4ad2cb1af8753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antisite defects</topic><topic>Charging</topic><topic>Coupling</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>fast charging</topic><topic>First principles</topic><topic>Ion diffusion</topic><topic>Lattice design</topic><topic>Lattice strain</topic><topic>Li+ diffusion mechanism</topic><topic>Lithium ions</topic><topic>Li–Fe antisite defects</topic><topic>nonequilibrium high‐temperature shock</topic><topic>Tensile strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jiawei</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Guo, Zhaoxin</creatorcontrib><creatorcontrib>Liu, Zhedong</creatorcontrib><creatorcontrib>Wang, Chunying</creatorcontrib><creatorcontrib>Jiang, Haoran</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Fan, Longlong</creatorcontrib><creatorcontrib>Zhu, He</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Ding, Jia</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jiawei</au><au>Zhang, Jingchao</au><au>Guo, Zhaoxin</au><au>Liu, Zhedong</au><au>Wang, Chunying</au><au>Jiang, Haoran</au><au>Zhang, Jinfeng</au><au>Fan, Longlong</au><au>Zhu, He</au><au>Xu, Yunhua</au><au>Liu, Rui</au><au>Ding, Jia</au><au>Chen, Yanan</au><au>Hu, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>32</issue><spage>e2405956</spage><epage>n/a</epage><pages>e2405956-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.
This work employs ultrafast nonequilibrium high‐temperature shock technology to controllably introduce Li–Fe antisite defects and lattice strain into the lattice of LiFePO4. The unique multiscale coupling structure promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability. The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202405956</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6346-6372</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405956-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3063464841 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antisite defects Charging Coupling Diffusion barriers Diffusion rate fast charging First principles Ion diffusion Lattice design Lattice strain Li+ diffusion mechanism Lithium ions Li–Fe antisite defects nonequilibrium high‐temperature shock Tensile strain |
title | Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Antisite%20Defect%20and%20Lattice%20Tensile%20Stimulates%20Facile%20Isotropic%20Li%E2%80%90Ion%20Diffusion&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Luo,%20Jiawei&rft.date=2024-08-01&rft.volume=36&rft.issue=32&rft.spage=e2405956&rft.epage=n/a&rft.pages=e2405956-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202405956&rft_dat=%3Cproquest_cross%3E3090215275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090215275&rft_id=info:pmid/&rfr_iscdi=true |