Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion

Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (32), p.e2405956-n/a
Hauptverfasser: Luo, Jiawei, Zhang, Jingchao, Guo, Zhaoxin, Liu, Zhedong, Wang, Chunying, Jiang, Haoran, Zhang, Jinfeng, Fan, Longlong, Zhu, He, Xu, Yunhua, Liu, Rui, Ding, Jia, Chen, Yanan, Hu, Wenbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page e2405956
container_title Advanced materials (Weinheim)
container_volume 36
creator Luo, Jiawei
Zhang, Jingchao
Guo, Zhaoxin
Liu, Zhedong
Wang, Chunying
Jiang, Haoran
Zhang, Jinfeng
Fan, Longlong
Zhu, He
Xu, Yunhua
Liu, Rui
Ding, Jia
Chen, Yanan
Hu, Wenbin
description Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes. This work employs ultrafast nonequilibrium high‐temperature shock technology to controllably introduce Li–Fe antisite defects and lattice strain into the lattice of LiFePO4. The unique multiscale coupling structure promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability. The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.
doi_str_mv 10.1002/adma.202405956
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3063464841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090215275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2356-d5b25994546834c2b3d0b1ee409776eb0e5a6e4028f71462988c4ad2cb1af8753</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiYUmxHduJx6ilUCmIgTIxRI7jIFdJHGJHqBuPwDPyJLgUgcTCdLrT95_uPgDOMZphhMiVrFo5I4hQxATjB2CCGcERRYIdggkSMYsEp-kxOHFugxASHPEJeJrbsW9M9wyzzhtnvIYLXWvloewqmEvvjdJwrTtnGg0fvGnHRnrt4FKq3WTlrB9sbxTMzcfb-8p2cGHqenTGdqfgqJaN02ffdQoel9fr-W2U39-s5lkeKRIzHlWsJEwIyihPY6pIGVeoxFqHy5OE6xJpJnnoSFonmHIi0lRRWRFVYlmnCYun4HK_tx_sy6idL1rjlG4a2Wk7uiJGPKbhdYoDevEH3dhx6MJ1gRKIBGVfC2d7Sg3WuUHXRT-YVg7bAqNi57rYuS5-XIeA2Adeg5PtP3SRLe6y3-wnxn6Chg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090215275</pqid></control><display><type>article</type><title>Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Jiawei ; Zhang, Jingchao ; Guo, Zhaoxin ; Liu, Zhedong ; Wang, Chunying ; Jiang, Haoran ; Zhang, Jinfeng ; Fan, Longlong ; Zhu, He ; Xu, Yunhua ; Liu, Rui ; Ding, Jia ; Chen, Yanan ; Hu, Wenbin</creator><creatorcontrib>Luo, Jiawei ; Zhang, Jingchao ; Guo, Zhaoxin ; Liu, Zhedong ; Wang, Chunying ; Jiang, Haoran ; Zhang, Jinfeng ; Fan, Longlong ; Zhu, He ; Xu, Yunhua ; Liu, Rui ; Ding, Jia ; Chen, Yanan ; Hu, Wenbin</creatorcontrib><description>Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes. This work employs ultrafast nonequilibrium high‐temperature shock technology to controllably introduce Li–Fe antisite defects and lattice strain into the lattice of LiFePO4. The unique multiscale coupling structure promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability. The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202405956</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Antisite defects ; Charging ; Coupling ; Diffusion barriers ; Diffusion rate ; fast charging ; First principles ; Ion diffusion ; Lattice design ; Lattice strain ; Li+ diffusion mechanism ; Lithium ions ; Li–Fe antisite defects ; nonequilibrium high‐temperature shock ; Tensile strain</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405956-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2356-d5b25994546834c2b3d0b1ee409776eb0e5a6e4028f71462988c4ad2cb1af8753</cites><orcidid>0000-0002-6346-6372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202405956$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202405956$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Luo, Jiawei</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Guo, Zhaoxin</creatorcontrib><creatorcontrib>Liu, Zhedong</creatorcontrib><creatorcontrib>Wang, Chunying</creatorcontrib><creatorcontrib>Jiang, Haoran</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Fan, Longlong</creatorcontrib><creatorcontrib>Zhu, He</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Ding, Jia</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><title>Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion</title><title>Advanced materials (Weinheim)</title><description>Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes. This work employs ultrafast nonequilibrium high‐temperature shock technology to controllably introduce Li–Fe antisite defects and lattice strain into the lattice of LiFePO4. The unique multiscale coupling structure promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability. The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.</description><subject>Antisite defects</subject><subject>Charging</subject><subject>Coupling</subject><subject>Diffusion barriers</subject><subject>Diffusion rate</subject><subject>fast charging</subject><subject>First principles</subject><subject>Ion diffusion</subject><subject>Lattice design</subject><subject>Lattice strain</subject><subject>Li+ diffusion mechanism</subject><subject>Lithium ions</subject><subject>Li–Fe antisite defects</subject><subject>nonequilibrium high‐temperature shock</subject><subject>Tensile strain</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMltiYUmxHduJx6ilUCmIgTIxRI7jIFdJHGJHqBuPwDPyJLgUgcTCdLrT95_uPgDOMZphhMiVrFo5I4hQxATjB2CCGcERRYIdggkSMYsEp-kxOHFugxASHPEJeJrbsW9M9wyzzhtnvIYLXWvloewqmEvvjdJwrTtnGg0fvGnHRnrt4FKq3WTlrB9sbxTMzcfb-8p2cGHqenTGdqfgqJaN02ffdQoel9fr-W2U39-s5lkeKRIzHlWsJEwIyihPY6pIGVeoxFqHy5OE6xJpJnnoSFonmHIi0lRRWRFVYlmnCYun4HK_tx_sy6idL1rjlG4a2Wk7uiJGPKbhdYoDevEH3dhx6MJ1gRKIBGVfC2d7Sg3WuUHXRT-YVg7bAqNi57rYuS5-XIeA2Adeg5PtP3SRLe6y3-wnxn6Chg</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Luo, Jiawei</creator><creator>Zhang, Jingchao</creator><creator>Guo, Zhaoxin</creator><creator>Liu, Zhedong</creator><creator>Wang, Chunying</creator><creator>Jiang, Haoran</creator><creator>Zhang, Jinfeng</creator><creator>Fan, Longlong</creator><creator>Zhu, He</creator><creator>Xu, Yunhua</creator><creator>Liu, Rui</creator><creator>Ding, Jia</creator><creator>Chen, Yanan</creator><creator>Hu, Wenbin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6346-6372</orcidid></search><sort><creationdate>20240801</creationdate><title>Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion</title><author>Luo, Jiawei ; Zhang, Jingchao ; Guo, Zhaoxin ; Liu, Zhedong ; Wang, Chunying ; Jiang, Haoran ; Zhang, Jinfeng ; Fan, Longlong ; Zhu, He ; Xu, Yunhua ; Liu, Rui ; Ding, Jia ; Chen, Yanan ; Hu, Wenbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2356-d5b25994546834c2b3d0b1ee409776eb0e5a6e4028f71462988c4ad2cb1af8753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antisite defects</topic><topic>Charging</topic><topic>Coupling</topic><topic>Diffusion barriers</topic><topic>Diffusion rate</topic><topic>fast charging</topic><topic>First principles</topic><topic>Ion diffusion</topic><topic>Lattice design</topic><topic>Lattice strain</topic><topic>Li+ diffusion mechanism</topic><topic>Lithium ions</topic><topic>Li–Fe antisite defects</topic><topic>nonequilibrium high‐temperature shock</topic><topic>Tensile strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jiawei</creatorcontrib><creatorcontrib>Zhang, Jingchao</creatorcontrib><creatorcontrib>Guo, Zhaoxin</creatorcontrib><creatorcontrib>Liu, Zhedong</creatorcontrib><creatorcontrib>Wang, Chunying</creatorcontrib><creatorcontrib>Jiang, Haoran</creatorcontrib><creatorcontrib>Zhang, Jinfeng</creatorcontrib><creatorcontrib>Fan, Longlong</creatorcontrib><creatorcontrib>Zhu, He</creatorcontrib><creatorcontrib>Xu, Yunhua</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Ding, Jia</creatorcontrib><creatorcontrib>Chen, Yanan</creatorcontrib><creatorcontrib>Hu, Wenbin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jiawei</au><au>Zhang, Jingchao</au><au>Guo, Zhaoxin</au><au>Liu, Zhedong</au><au>Wang, Chunying</au><au>Jiang, Haoran</au><au>Zhang, Jinfeng</au><au>Fan, Longlong</au><au>Zhu, He</au><au>Xu, Yunhua</au><au>Liu, Rui</au><au>Ding, Jia</au><au>Chen, Yanan</au><au>Hu, Wenbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>32</issue><spage>e2405956</spage><epage>n/a</epage><pages>e2405956-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Despite widely used as a commercial cathode, the anisotropic 1D channel hopping of lithium ions along the [010] direction in LiFePO4 prevents its application in fast charging conditions. Herein, an ultrafast nonequilibrium high‐temperature shock technology is employed to controllably introduce the Li–Fe antisite defects and tensile strain into the lattice of LiFePO4. This design makes the study of the effect of the strain field on the performance further extended from the theoretical calculation to the experimental perspective. The existence of Li–Fe antisite defects makes it feasible for Li+ to move from the 4a site of the edge‐sharing octahedra across the ab plane to 4c site of corner‐sharing octahedra, producing a new diffusion channel different from [010]. Meanwhile, the presence of a tensile strain field reduces the energy barrier of the new 2D diffusion path. In the combination of electrochemical experiments and first‐principles calculations, the unique multiscale coupling structure of Li–Fe antisite defects and lattice strain promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability (high‐capacity retention of 84.4% after 2000 cycles at 10 C). The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes. This work employs ultrafast nonequilibrium high‐temperature shock technology to controllably introduce Li–Fe antisite defects and lattice strain into the lattice of LiFePO4. The unique multiscale coupling structure promotes isotropic 2D interchannel Li+ hopping, leading to excellent fast charging performance and cycling stability. The new mechanism of Li+ diffusion kinetics accelerated by multiscale coupling can guide the design of high‐rate electrodes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202405956</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6346-6372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (32), p.e2405956-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3063464841
source Wiley Online Library Journals Frontfile Complete
subjects Antisite defects
Charging
Coupling
Diffusion barriers
Diffusion rate
fast charging
First principles
Ion diffusion
Lattice design
Lattice strain
Li+ diffusion mechanism
Lithium ions
Li–Fe antisite defects
nonequilibrium high‐temperature shock
Tensile strain
title Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Antisite%20Defect%20and%20Lattice%20Tensile%20Stimulates%20Facile%20Isotropic%20Li%E2%80%90Ion%20Diffusion&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Luo,%20Jiawei&rft.date=2024-08-01&rft.volume=36&rft.issue=32&rft.spage=e2405956&rft.epage=n/a&rft.pages=e2405956-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202405956&rft_dat=%3Cproquest_cross%3E3090215275%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090215275&rft_id=info:pmid/&rfr_iscdi=true