A Radiological-Radiomics model for differentiation between minimally invasive adenocarcinoma and invasive adenocarcinoma less than or equal to 3 cm: A two-center retrospective study

•In a two-centre retrospective study of patients with 509 adenocarcinomas, radiomics features based on CT images could distinguish MIA from IA.•The R-R model that combined radiological features with radiomics features showed excellent diagnostic performance in differentiating MIA and IA.•The AUC of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of radiology 2024-07, Vol.176, p.111532, Article 111532
Hauptverfasser: Dong, Hao, Xi, Yuzhen, Liu, Kai, Chen, Lei, Li, Yang, Pan, Xianpan, Zhang, Xingwei, Ye, XiaoDan, Ding, Zhongxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111532
container_title European journal of radiology
container_volume 176
creator Dong, Hao
Xi, Yuzhen
Liu, Kai
Chen, Lei
Li, Yang
Pan, Xianpan
Zhang, Xingwei
Ye, XiaoDan
Ding, Zhongxiang
description •In a two-centre retrospective study of patients with 509 adenocarcinomas, radiomics features based on CT images could distinguish MIA from IA.•The R-R model that combined radiological features with radiomics features showed excellent diagnostic performance in differentiating MIA and IA.•The AUC of the R-R model was 0.894 in the external test set (sensitivity, 84.8%; specificity, 78.6%; accuracy, 83.3%). To develop a Radiological-Radiomics (R-R) combined model for differentiation between minimal invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA) of lung adenocarcinoma (LUAD) and evaluate its predictive performance. The clinical, pathological, and imaging data of a total of 509 patients (522 lesions) with LUAD diagnosed by surgical pathology from 2 medical centres were retrospectively collected, with 392 patients (402 lesions) from center 1 trained and validated using a five-fold cross-validation method, and 117 patients (120 lesions) from center 2 serving as an independent external test set. The least absolute shrinkage and selection operator (LASSO) method was utilized to filter features. Logistic regression was used to construct three models for predicting IA, namely, Radiological model, Radiomics model, and R-R model. Also, receiver operating curve curves (ROCs) were plotted, generating corresponding area under the curve (AUC), sensitivity, specificity, and accuracy. The R-R model for IA prediction achieved an AUC of 0.918 (95 % CI: 0.889–0.947), a sensitivity of 80.3 %, a specificity of 88.2 %, and an accuracy of 82.1 % in the training set. In the validation set, this model exhibited an AUC of 0.906 (95 % CI: 0.842–0.970), a sensitivity of 79.9 %, a specificity of 88.1 %, and an accuracy of 81.8 %. In the external test set, the AUC was 0.894 (95 % CI: 0.824–0.964), a sensitivity of 84.8 %, a specificity of 78.6 %, and an accuracy of 83.3 %. The R-R model showed excellent diagnostic performance in differentiating MIA and IA, which can provide a certain reference for clinical diagnosis and surgical treatment plans.
doi_str_mv 10.1016/j.ejrad.2024.111532
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3063464287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X24002481</els_id><sourcerecordid>3063464287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-22e6925f58d56949a1ad3c83d5a26ef758faf9beb80fa1d9159744285aeee1c63</originalsourceid><addsrcrecordid>eNp9kcGKFDEQhhtR3NnVJxAkRy89JulOd1rwMCzrKiwIouAt1CQVzZBOZpPMLPM2PoUP4JOZ2Vm96akI9f_1V-prmheMLhllw-vNEjcJzJJT3i8ZY6Ljj5oFkyNvx5GPj5sFHTltaS-_njXnOW8opaKf-NPmrJOS00nwRfNzRT6BcdHHb06Db-8fs9OZzNGgJzYmYpy1mDAUB8XFQNZY7hADmV1wM3h_IC7sIbs9EjAYooakXYgzEAjmnz2POZPyHQKpEXi7A09KJN2vH3p-Q1ak3MVW10xMJGFJMW9Rl-OYXHbm8Kx5YsFnfP5QL5ov764-X75vbz5ef7hc3bSay760nOMwcWGFNGKY-gkYmE7LzgjgA9pRSAt2WuNaUgvMTExMY99zKQARmR66i-bVae42xdsd5qJmlzV6DwHjLquODl0_VMdYpd1JquuyOaFV21TPkw6KUXUEpjbqHpg6AlMnYNX18iFgt57R_PX8IVQFb08CrN_cO0wqa4dBo3GpXkSZ6P4b8Bvaf61n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063464287</pqid></control><display><type>article</type><title>A Radiological-Radiomics model for differentiation between minimally invasive adenocarcinoma and invasive adenocarcinoma less than or equal to 3 cm: A two-center retrospective study</title><source>Elsevier ScienceDirect Journals</source><creator>Dong, Hao ; Xi, Yuzhen ; Liu, Kai ; Chen, Lei ; Li, Yang ; Pan, Xianpan ; Zhang, Xingwei ; Ye, XiaoDan ; Ding, Zhongxiang</creator><creatorcontrib>Dong, Hao ; Xi, Yuzhen ; Liu, Kai ; Chen, Lei ; Li, Yang ; Pan, Xianpan ; Zhang, Xingwei ; Ye, XiaoDan ; Ding, Zhongxiang</creatorcontrib><description>•In a two-centre retrospective study of patients with 509 adenocarcinomas, radiomics features based on CT images could distinguish MIA from IA.•The R-R model that combined radiological features with radiomics features showed excellent diagnostic performance in differentiating MIA and IA.•The AUC of the R-R model was 0.894 in the external test set (sensitivity, 84.8%; specificity, 78.6%; accuracy, 83.3%). To develop a Radiological-Radiomics (R-R) combined model for differentiation between minimal invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA) of lung adenocarcinoma (LUAD) and evaluate its predictive performance. The clinical, pathological, and imaging data of a total of 509 patients (522 lesions) with LUAD diagnosed by surgical pathology from 2 medical centres were retrospectively collected, with 392 patients (402 lesions) from center 1 trained and validated using a five-fold cross-validation method, and 117 patients (120 lesions) from center 2 serving as an independent external test set. The least absolute shrinkage and selection operator (LASSO) method was utilized to filter features. Logistic regression was used to construct three models for predicting IA, namely, Radiological model, Radiomics model, and R-R model. Also, receiver operating curve curves (ROCs) were plotted, generating corresponding area under the curve (AUC), sensitivity, specificity, and accuracy. The R-R model for IA prediction achieved an AUC of 0.918 (95 % CI: 0.889–0.947), a sensitivity of 80.3 %, a specificity of 88.2 %, and an accuracy of 82.1 % in the training set. In the validation set, this model exhibited an AUC of 0.906 (95 % CI: 0.842–0.970), a sensitivity of 79.9 %, a specificity of 88.1 %, and an accuracy of 81.8 %. In the external test set, the AUC was 0.894 (95 % CI: 0.824–0.964), a sensitivity of 84.8 %, a specificity of 78.6 %, and an accuracy of 83.3 %. The R-R model showed excellent diagnostic performance in differentiating MIA and IA, which can provide a certain reference for clinical diagnosis and surgical treatment plans.</description><identifier>ISSN: 0720-048X</identifier><identifier>ISSN: 1872-7727</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2024.111532</identifier><identifier>PMID: 38820952</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Invasive adenocarcinoma ; Lung adenocarcinoma ; Minimally invasive adenocarcinoma ; Radiological ; Radiomics</subject><ispartof>European journal of radiology, 2024-07, Vol.176, p.111532, Article 111532</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-22e6925f58d56949a1ad3c83d5a26ef758faf9beb80fa1d9159744285aeee1c63</cites><orcidid>0000-0003-3345-5506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0720048X24002481$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65308</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38820952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Xi, Yuzhen</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Pan, Xianpan</creatorcontrib><creatorcontrib>Zhang, Xingwei</creatorcontrib><creatorcontrib>Ye, XiaoDan</creatorcontrib><creatorcontrib>Ding, Zhongxiang</creatorcontrib><title>A Radiological-Radiomics model for differentiation between minimally invasive adenocarcinoma and invasive adenocarcinoma less than or equal to 3 cm: A two-center retrospective study</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>•In a two-centre retrospective study of patients with 509 adenocarcinomas, radiomics features based on CT images could distinguish MIA from IA.•The R-R model that combined radiological features with radiomics features showed excellent diagnostic performance in differentiating MIA and IA.•The AUC of the R-R model was 0.894 in the external test set (sensitivity, 84.8%; specificity, 78.6%; accuracy, 83.3%). To develop a Radiological-Radiomics (R-R) combined model for differentiation between minimal invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA) of lung adenocarcinoma (LUAD) and evaluate its predictive performance. The clinical, pathological, and imaging data of a total of 509 patients (522 lesions) with LUAD diagnosed by surgical pathology from 2 medical centres were retrospectively collected, with 392 patients (402 lesions) from center 1 trained and validated using a five-fold cross-validation method, and 117 patients (120 lesions) from center 2 serving as an independent external test set. The least absolute shrinkage and selection operator (LASSO) method was utilized to filter features. Logistic regression was used to construct three models for predicting IA, namely, Radiological model, Radiomics model, and R-R model. Also, receiver operating curve curves (ROCs) were plotted, generating corresponding area under the curve (AUC), sensitivity, specificity, and accuracy. The R-R model for IA prediction achieved an AUC of 0.918 (95 % CI: 0.889–0.947), a sensitivity of 80.3 %, a specificity of 88.2 %, and an accuracy of 82.1 % in the training set. In the validation set, this model exhibited an AUC of 0.906 (95 % CI: 0.842–0.970), a sensitivity of 79.9 %, a specificity of 88.1 %, and an accuracy of 81.8 %. In the external test set, the AUC was 0.894 (95 % CI: 0.824–0.964), a sensitivity of 84.8 %, a specificity of 78.6 %, and an accuracy of 83.3 %. The R-R model showed excellent diagnostic performance in differentiating MIA and IA, which can provide a certain reference for clinical diagnosis and surgical treatment plans.</description><subject>Invasive adenocarcinoma</subject><subject>Lung adenocarcinoma</subject><subject>Minimally invasive adenocarcinoma</subject><subject>Radiological</subject><subject>Radiomics</subject><issn>0720-048X</issn><issn>1872-7727</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kcGKFDEQhhtR3NnVJxAkRy89JulOd1rwMCzrKiwIouAt1CQVzZBOZpPMLPM2PoUP4JOZ2Vm96akI9f_1V-prmheMLhllw-vNEjcJzJJT3i8ZY6Ljj5oFkyNvx5GPj5sFHTltaS-_njXnOW8opaKf-NPmrJOS00nwRfNzRT6BcdHHb06Db-8fs9OZzNGgJzYmYpy1mDAUB8XFQNZY7hADmV1wM3h_IC7sIbs9EjAYooakXYgzEAjmnz2POZPyHQKpEXi7A09KJN2vH3p-Q1ak3MVW10xMJGFJMW9Rl-OYXHbm8Kx5YsFnfP5QL5ov764-X75vbz5ef7hc3bSay760nOMwcWGFNGKY-gkYmE7LzgjgA9pRSAt2WuNaUgvMTExMY99zKQARmR66i-bVae42xdsd5qJmlzV6DwHjLquODl0_VMdYpd1JquuyOaFV21TPkw6KUXUEpjbqHpg6AlMnYNX18iFgt57R_PX8IVQFb08CrN_cO0wqa4dBo3GpXkSZ6P4b8Bvaf61n</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Dong, Hao</creator><creator>Xi, Yuzhen</creator><creator>Liu, Kai</creator><creator>Chen, Lei</creator><creator>Li, Yang</creator><creator>Pan, Xianpan</creator><creator>Zhang, Xingwei</creator><creator>Ye, XiaoDan</creator><creator>Ding, Zhongxiang</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3345-5506</orcidid></search><sort><creationdate>20240701</creationdate><title>A Radiological-Radiomics model for differentiation between minimally invasive adenocarcinoma and invasive adenocarcinoma less than or equal to 3 cm: A two-center retrospective study</title><author>Dong, Hao ; Xi, Yuzhen ; Liu, Kai ; Chen, Lei ; Li, Yang ; Pan, Xianpan ; Zhang, Xingwei ; Ye, XiaoDan ; Ding, Zhongxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-22e6925f58d56949a1ad3c83d5a26ef758faf9beb80fa1d9159744285aeee1c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Invasive adenocarcinoma</topic><topic>Lung adenocarcinoma</topic><topic>Minimally invasive adenocarcinoma</topic><topic>Radiological</topic><topic>Radiomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Xi, Yuzhen</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Pan, Xianpan</creatorcontrib><creatorcontrib>Zhang, Xingwei</creatorcontrib><creatorcontrib>Ye, XiaoDan</creatorcontrib><creatorcontrib>Ding, Zhongxiang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Hao</au><au>Xi, Yuzhen</au><au>Liu, Kai</au><au>Chen, Lei</au><au>Li, Yang</au><au>Pan, Xianpan</au><au>Zhang, Xingwei</au><au>Ye, XiaoDan</au><au>Ding, Zhongxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Radiological-Radiomics model for differentiation between minimally invasive adenocarcinoma and invasive adenocarcinoma less than or equal to 3 cm: A two-center retrospective study</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>176</volume><spage>111532</spage><pages>111532-</pages><artnum>111532</artnum><issn>0720-048X</issn><issn>1872-7727</issn><eissn>1872-7727</eissn><abstract>•In a two-centre retrospective study of patients with 509 adenocarcinomas, radiomics features based on CT images could distinguish MIA from IA.•The R-R model that combined radiological features with radiomics features showed excellent diagnostic performance in differentiating MIA and IA.•The AUC of the R-R model was 0.894 in the external test set (sensitivity, 84.8%; specificity, 78.6%; accuracy, 83.3%). To develop a Radiological-Radiomics (R-R) combined model for differentiation between minimal invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA) of lung adenocarcinoma (LUAD) and evaluate its predictive performance. The clinical, pathological, and imaging data of a total of 509 patients (522 lesions) with LUAD diagnosed by surgical pathology from 2 medical centres were retrospectively collected, with 392 patients (402 lesions) from center 1 trained and validated using a five-fold cross-validation method, and 117 patients (120 lesions) from center 2 serving as an independent external test set. The least absolute shrinkage and selection operator (LASSO) method was utilized to filter features. Logistic regression was used to construct three models for predicting IA, namely, Radiological model, Radiomics model, and R-R model. Also, receiver operating curve curves (ROCs) were plotted, generating corresponding area under the curve (AUC), sensitivity, specificity, and accuracy. The R-R model for IA prediction achieved an AUC of 0.918 (95 % CI: 0.889–0.947), a sensitivity of 80.3 %, a specificity of 88.2 %, and an accuracy of 82.1 % in the training set. In the validation set, this model exhibited an AUC of 0.906 (95 % CI: 0.842–0.970), a sensitivity of 79.9 %, a specificity of 88.1 %, and an accuracy of 81.8 %. In the external test set, the AUC was 0.894 (95 % CI: 0.824–0.964), a sensitivity of 84.8 %, a specificity of 78.6 %, and an accuracy of 83.3 %. The R-R model showed excellent diagnostic performance in differentiating MIA and IA, which can provide a certain reference for clinical diagnosis and surgical treatment plans.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>38820952</pmid><doi>10.1016/j.ejrad.2024.111532</doi><orcidid>https://orcid.org/0000-0003-3345-5506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2024-07, Vol.176, p.111532, Article 111532
issn 0720-048X
1872-7727
1872-7727
language eng
recordid cdi_proquest_miscellaneous_3063464287
source Elsevier ScienceDirect Journals
subjects Invasive adenocarcinoma
Lung adenocarcinoma
Minimally invasive adenocarcinoma
Radiological
Radiomics
title A Radiological-Radiomics model for differentiation between minimally invasive adenocarcinoma and invasive adenocarcinoma less than or equal to 3 cm: A two-center retrospective study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Radiological-Radiomics%20model%20for%20differentiation%20between%20minimally%20invasive%20adenocarcinoma%20and%20invasive%20adenocarcinoma%20less%20than%20or%20equal%20to%203%C2%A0cm:%20A%20two-center%20retrospective%20study&rft.jtitle=European%20journal%20of%20radiology&rft.au=Dong,%20Hao&rft.date=2024-07-01&rft.volume=176&rft.spage=111532&rft.pages=111532-&rft.artnum=111532&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2024.111532&rft_dat=%3Cproquest_cross%3E3063464287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063464287&rft_id=info:pmid/38820952&rft_els_id=S0720048X24002481&rfr_iscdi=true