Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs

This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs. The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dentistry 2024-08, Vol.147, p.105105, Article 105105
Hauptverfasser: Szabó, Viktor, Szabó, Bence Tamás, Orhan, Kaan, Veres, Dániel Sándor, Manulis, David, Ezhov, Matvey, Sanders, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105105
container_title Journal of dentistry
container_volume 147
creator Szabó, Viktor
Szabó, Bence Tamás
Orhan, Kaan
Veres, Dániel Sándor
Manulis, David
Ezhov, Matvey
Sanders, Alex
description This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs. The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated. During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66–1, κ=0.58–0.7, and κ=0.49–0.7. The Fleiss kappa values were κ=0.57–0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51–0.76, 0.88–0.97 and 0.76–0.86, respectively. The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers. Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology..
doi_str_mv 10.1016/j.jdent.2024.105105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3063463644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300571224002744</els_id><sourcerecordid>3063463644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-39a43a2957dbaafe37ebb2efea6250d4943f6caa643a2479a47d6260111ecd433</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoaLZJf0Gh6NiLN_paeX3ooYR-QSCXtOQmxtJ4M4vXciVvQi_97ZHrNMeCYEDzzLzMw9g7KdZSSHu5X-8DDtNaCWXKz6a8E7aS27qpZG3vXrGV0EJUm1qqM_Ym570QwgjVvGZnertVUjdmxf78hJ4CTBQHHjsOaaKOPEHPaZiw72mHg0cO49iTX7AuJj4HF8ZDIsw8EOyGmCnz0i5zCWIq3ZYmfKRhx2EIfMREMJYdPU8QKO4SjPf5gp120Gd8-1zP2Y8vn2-vvlXXN1-_X326rrzamqnSDRgNqtnUoQXoUNfYtgo7BKs2IpjG6M56ADtTpi50HayyQkqJPhitz9mHZe-Y4q8j5skdKPtyHwwYj9lpYbWx2hpTUL2gPsWcE3ZuTHSA9NtJ4Wbxbu_-inezeLeIL1PvnwOO7QHDy8w_0wX4uABYznwgTC57mt0GSugnFyL9N-AJK56YVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063463644</pqid></control><display><type>article</type><title>Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Szabó, Viktor ; Szabó, Bence Tamás ; Orhan, Kaan ; Veres, Dániel Sándor ; Manulis, David ; Ezhov, Matvey ; Sanders, Alex</creator><creatorcontrib>Szabó, Viktor ; Szabó, Bence Tamás ; Orhan, Kaan ; Veres, Dániel Sándor ; Manulis, David ; Ezhov, Matvey ; Sanders, Alex</creatorcontrib><description>This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs. The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated. During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66–1, κ=0.58–0.7, and κ=0.49–0.7. The Fleiss kappa values were κ=0.57–0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51–0.76, 0.88–0.97 and 0.76–0.86, respectively. The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers. Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology..</description><identifier>ISSN: 0300-5712</identifier><identifier>ISSN: 1879-176X</identifier><identifier>EISSN: 1879-176X</identifier><identifier>DOI: 10.1016/j.jdent.2024.105105</identifier><identifier>PMID: 38821394</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Artificial Intelligence ; Deep learning ; Dental caries ; Dental Caries - diagnostic imaging ; Dental digital radiography ; Diagnostic imaging ; Female ; Humans ; Machine learning ; Male ; Neural Networks, Computer ; Radiography, Bitewing ; Radiography, Dental - methods ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Journal of dentistry, 2024-08, Vol.147, p.105105, Article 105105</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-39a43a2957dbaafe37ebb2efea6250d4943f6caa643a2479a47d6260111ecd433</cites><orcidid>0009-0009-2718-451X ; 0000-0002-5933-3956 ; 0009-0008-4196-024X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jdent.2024.105105$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38821394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabó, Viktor</creatorcontrib><creatorcontrib>Szabó, Bence Tamás</creatorcontrib><creatorcontrib>Orhan, Kaan</creatorcontrib><creatorcontrib>Veres, Dániel Sándor</creatorcontrib><creatorcontrib>Manulis, David</creatorcontrib><creatorcontrib>Ezhov, Matvey</creatorcontrib><creatorcontrib>Sanders, Alex</creatorcontrib><title>Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs</title><title>Journal of dentistry</title><addtitle>J Dent</addtitle><description>This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs. The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated. During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66–1, κ=0.58–0.7, and κ=0.49–0.7. The Fleiss kappa values were κ=0.57–0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51–0.76, 0.88–0.97 and 0.76–0.86, respectively. The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers. Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology..</description><subject>Adult</subject><subject>Artificial Intelligence</subject><subject>Deep learning</subject><subject>Dental caries</subject><subject>Dental Caries - diagnostic imaging</subject><subject>Dental digital radiography</subject><subject>Diagnostic imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Male</subject><subject>Neural Networks, Computer</subject><subject>Radiography, Bitewing</subject><subject>Radiography, Dental - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0300-5712</issn><issn>1879-176X</issn><issn>1879-176X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVoaLZJf0Gh6NiLN_paeX3ooYR-QSCXtOQmxtJ4M4vXciVvQi_97ZHrNMeCYEDzzLzMw9g7KdZSSHu5X-8DDtNaCWXKz6a8E7aS27qpZG3vXrGV0EJUm1qqM_Ym570QwgjVvGZnertVUjdmxf78hJ4CTBQHHjsOaaKOPEHPaZiw72mHg0cO49iTX7AuJj4HF8ZDIsw8EOyGmCnz0i5zCWIq3ZYmfKRhx2EIfMREMJYdPU8QKO4SjPf5gp120Gd8-1zP2Y8vn2-vvlXXN1-_X326rrzamqnSDRgNqtnUoQXoUNfYtgo7BKs2IpjG6M56ADtTpi50HayyQkqJPhitz9mHZe-Y4q8j5skdKPtyHwwYj9lpYbWx2hpTUL2gPsWcE3ZuTHSA9NtJ4Wbxbu_-inezeLeIL1PvnwOO7QHDy8w_0wX4uABYznwgTC57mt0GSugnFyL9N-AJK56YVw</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Szabó, Viktor</creator><creator>Szabó, Bence Tamás</creator><creator>Orhan, Kaan</creator><creator>Veres, Dániel Sándor</creator><creator>Manulis, David</creator><creator>Ezhov, Matvey</creator><creator>Sanders, Alex</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-2718-451X</orcidid><orcidid>https://orcid.org/0000-0002-5933-3956</orcidid><orcidid>https://orcid.org/0009-0008-4196-024X</orcidid></search><sort><creationdate>202408</creationdate><title>Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs</title><author>Szabó, Viktor ; Szabó, Bence Tamás ; Orhan, Kaan ; Veres, Dániel Sándor ; Manulis, David ; Ezhov, Matvey ; Sanders, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-39a43a2957dbaafe37ebb2efea6250d4943f6caa643a2479a47d6260111ecd433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Artificial Intelligence</topic><topic>Deep learning</topic><topic>Dental caries</topic><topic>Dental Caries - diagnostic imaging</topic><topic>Dental digital radiography</topic><topic>Diagnostic imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Male</topic><topic>Neural Networks, Computer</topic><topic>Radiography, Bitewing</topic><topic>Radiography, Dental - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabó, Viktor</creatorcontrib><creatorcontrib>Szabó, Bence Tamás</creatorcontrib><creatorcontrib>Orhan, Kaan</creatorcontrib><creatorcontrib>Veres, Dániel Sándor</creatorcontrib><creatorcontrib>Manulis, David</creatorcontrib><creatorcontrib>Ezhov, Matvey</creatorcontrib><creatorcontrib>Sanders, Alex</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabó, Viktor</au><au>Szabó, Bence Tamás</au><au>Orhan, Kaan</au><au>Veres, Dániel Sándor</au><au>Manulis, David</au><au>Ezhov, Matvey</au><au>Sanders, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs</atitle><jtitle>Journal of dentistry</jtitle><addtitle>J Dent</addtitle><date>2024-08</date><risdate>2024</risdate><volume>147</volume><spage>105105</spage><pages>105105-</pages><artnum>105105</artnum><issn>0300-5712</issn><issn>1879-176X</issn><eissn>1879-176X</eissn><abstract>This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs. The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated. During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66–1, κ=0.58–0.7, and κ=0.49–0.7. The Fleiss kappa values were κ=0.57–0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51–0.76, 0.88–0.97 and 0.76–0.86, respectively. The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers. Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology..</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38821394</pmid><doi>10.1016/j.jdent.2024.105105</doi><orcidid>https://orcid.org/0009-0009-2718-451X</orcidid><orcidid>https://orcid.org/0000-0002-5933-3956</orcidid><orcidid>https://orcid.org/0009-0008-4196-024X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0300-5712
ispartof Journal of dentistry, 2024-08, Vol.147, p.105105, Article 105105
issn 0300-5712
1879-176X
1879-176X
language eng
recordid cdi_proquest_miscellaneous_3063463644
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adult
Artificial Intelligence
Deep learning
Dental caries
Dental Caries - diagnostic imaging
Dental digital radiography
Diagnostic imaging
Female
Humans
Machine learning
Male
Neural Networks, Computer
Radiography, Bitewing
Radiography, Dental - methods
Reproducibility of Results
Sensitivity and Specificity
title Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20artificial%20intelligence%20application%20for%20dental%20caries%20diagnosis%20on%20intraoral%20bitewing%20and%20periapical%20radiographs&rft.jtitle=Journal%20of%20dentistry&rft.au=Szab%C3%B3,%20Viktor&rft.date=2024-08&rft.volume=147&rft.spage=105105&rft.pages=105105-&rft.artnum=105105&rft.issn=0300-5712&rft.eissn=1879-176X&rft_id=info:doi/10.1016/j.jdent.2024.105105&rft_dat=%3Cproquest_cross%3E3063463644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063463644&rft_id=info:pmid/38821394&rft_els_id=S0300571224002744&rfr_iscdi=true