Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs
This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs. The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnoc...
Gespeichert in:
Veröffentlicht in: | Journal of dentistry 2024-08, Vol.147, p.105105, Article 105105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105105 |
container_title | Journal of dentistry |
container_volume | 147 |
creator | Szabó, Viktor Szabó, Bence Tamás Orhan, Kaan Veres, Dániel Sándor Manulis, David Ezhov, Matvey Sanders, Alex |
description | This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs.
The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated.
During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66–1, κ=0.58–0.7, and κ=0.49–0.7. The Fleiss kappa values were κ=0.57–0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51–0.76, 0.88–0.97 and 0.76–0.86, respectively.
The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers.
Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology.. |
doi_str_mv | 10.1016/j.jdent.2024.105105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3063463644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0300571224002744</els_id><sourcerecordid>3063463644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-39a43a2957dbaafe37ebb2efea6250d4943f6caa643a2479a47d6260111ecd433</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoaLZJf0Gh6NiLN_paeX3ooYR-QSCXtOQmxtJ4M4vXciVvQi_97ZHrNMeCYEDzzLzMw9g7KdZSSHu5X-8DDtNaCWXKz6a8E7aS27qpZG3vXrGV0EJUm1qqM_Ym570QwgjVvGZnertVUjdmxf78hJ4CTBQHHjsOaaKOPEHPaZiw72mHg0cO49iTX7AuJj4HF8ZDIsw8EOyGmCnz0i5zCWIq3ZYmfKRhx2EIfMREMJYdPU8QKO4SjPf5gp120Gd8-1zP2Y8vn2-vvlXXN1-_X326rrzamqnSDRgNqtnUoQXoUNfYtgo7BKs2IpjG6M56ADtTpi50HayyQkqJPhitz9mHZe-Y4q8j5skdKPtyHwwYj9lpYbWx2hpTUL2gPsWcE3ZuTHSA9NtJ4Wbxbu_-inezeLeIL1PvnwOO7QHDy8w_0wX4uABYznwgTC57mt0GSugnFyL9N-AJK56YVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3063463644</pqid></control><display><type>article</type><title>Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Szabó, Viktor ; Szabó, Bence Tamás ; Orhan, Kaan ; Veres, Dániel Sándor ; Manulis, David ; Ezhov, Matvey ; Sanders, Alex</creator><creatorcontrib>Szabó, Viktor ; Szabó, Bence Tamás ; Orhan, Kaan ; Veres, Dániel Sándor ; Manulis, David ; Ezhov, Matvey ; Sanders, Alex</creatorcontrib><description>This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs.
The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated.
During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66–1, κ=0.58–0.7, and κ=0.49–0.7. The Fleiss kappa values were κ=0.57–0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51–0.76, 0.88–0.97 and 0.76–0.86, respectively.
The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers.
Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology..</description><identifier>ISSN: 0300-5712</identifier><identifier>ISSN: 1879-176X</identifier><identifier>EISSN: 1879-176X</identifier><identifier>DOI: 10.1016/j.jdent.2024.105105</identifier><identifier>PMID: 38821394</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Artificial Intelligence ; Deep learning ; Dental caries ; Dental Caries - diagnostic imaging ; Dental digital radiography ; Diagnostic imaging ; Female ; Humans ; Machine learning ; Male ; Neural Networks, Computer ; Radiography, Bitewing ; Radiography, Dental - methods ; Reproducibility of Results ; Sensitivity and Specificity</subject><ispartof>Journal of dentistry, 2024-08, Vol.147, p.105105, Article 105105</ispartof><rights>2024</rights><rights>Copyright © 2024. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-39a43a2957dbaafe37ebb2efea6250d4943f6caa643a2479a47d6260111ecd433</cites><orcidid>0009-0009-2718-451X ; 0000-0002-5933-3956 ; 0009-0008-4196-024X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jdent.2024.105105$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38821394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Szabó, Viktor</creatorcontrib><creatorcontrib>Szabó, Bence Tamás</creatorcontrib><creatorcontrib>Orhan, Kaan</creatorcontrib><creatorcontrib>Veres, Dániel Sándor</creatorcontrib><creatorcontrib>Manulis, David</creatorcontrib><creatorcontrib>Ezhov, Matvey</creatorcontrib><creatorcontrib>Sanders, Alex</creatorcontrib><title>Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs</title><title>Journal of dentistry</title><addtitle>J Dent</addtitle><description>This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs.
The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated.
During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66–1, κ=0.58–0.7, and κ=0.49–0.7. The Fleiss kappa values were κ=0.57–0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51–0.76, 0.88–0.97 and 0.76–0.86, respectively.
The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers.
Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology..</description><subject>Adult</subject><subject>Artificial Intelligence</subject><subject>Deep learning</subject><subject>Dental caries</subject><subject>Dental Caries - diagnostic imaging</subject><subject>Dental digital radiography</subject><subject>Diagnostic imaging</subject><subject>Female</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Male</subject><subject>Neural Networks, Computer</subject><subject>Radiography, Bitewing</subject><subject>Radiography, Dental - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><issn>0300-5712</issn><issn>1879-176X</issn><issn>1879-176X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVoaLZJf0Gh6NiLN_paeX3ooYR-QSCXtOQmxtJ4M4vXciVvQi_97ZHrNMeCYEDzzLzMw9g7KdZSSHu5X-8DDtNaCWXKz6a8E7aS27qpZG3vXrGV0EJUm1qqM_Ym570QwgjVvGZnertVUjdmxf78hJ4CTBQHHjsOaaKOPEHPaZiw72mHg0cO49iTX7AuJj4HF8ZDIsw8EOyGmCnz0i5zCWIq3ZYmfKRhx2EIfMREMJYdPU8QKO4SjPf5gp120Gd8-1zP2Y8vn2-vvlXXN1-_X326rrzamqnSDRgNqtnUoQXoUNfYtgo7BKs2IpjG6M56ADtTpi50HayyQkqJPhitz9mHZe-Y4q8j5skdKPtyHwwYj9lpYbWx2hpTUL2gPsWcE3ZuTHSA9NtJ4Wbxbu_-inezeLeIL1PvnwOO7QHDy8w_0wX4uABYznwgTC57mt0GSugnFyL9N-AJK56YVw</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Szabó, Viktor</creator><creator>Szabó, Bence Tamás</creator><creator>Orhan, Kaan</creator><creator>Veres, Dániel Sándor</creator><creator>Manulis, David</creator><creator>Ezhov, Matvey</creator><creator>Sanders, Alex</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0009-2718-451X</orcidid><orcidid>https://orcid.org/0000-0002-5933-3956</orcidid><orcidid>https://orcid.org/0009-0008-4196-024X</orcidid></search><sort><creationdate>202408</creationdate><title>Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs</title><author>Szabó, Viktor ; Szabó, Bence Tamás ; Orhan, Kaan ; Veres, Dániel Sándor ; Manulis, David ; Ezhov, Matvey ; Sanders, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-39a43a2957dbaafe37ebb2efea6250d4943f6caa643a2479a47d6260111ecd433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Artificial Intelligence</topic><topic>Deep learning</topic><topic>Dental caries</topic><topic>Dental Caries - diagnostic imaging</topic><topic>Dental digital radiography</topic><topic>Diagnostic imaging</topic><topic>Female</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Male</topic><topic>Neural Networks, Computer</topic><topic>Radiography, Bitewing</topic><topic>Radiography, Dental - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szabó, Viktor</creatorcontrib><creatorcontrib>Szabó, Bence Tamás</creatorcontrib><creatorcontrib>Orhan, Kaan</creatorcontrib><creatorcontrib>Veres, Dániel Sándor</creatorcontrib><creatorcontrib>Manulis, David</creatorcontrib><creatorcontrib>Ezhov, Matvey</creatorcontrib><creatorcontrib>Sanders, Alex</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szabó, Viktor</au><au>Szabó, Bence Tamás</au><au>Orhan, Kaan</au><au>Veres, Dániel Sándor</au><au>Manulis, David</au><au>Ezhov, Matvey</au><au>Sanders, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs</atitle><jtitle>Journal of dentistry</jtitle><addtitle>J Dent</addtitle><date>2024-08</date><risdate>2024</risdate><volume>147</volume><spage>105105</spage><pages>105105-</pages><artnum>105105</artnum><issn>0300-5712</issn><issn>1879-176X</issn><eissn>1879-176X</eissn><abstract>This study aimed to assess the reliability of AI-based system that assists the healthcare processes in the diagnosis of caries on intraoral radiographs.
The proximal surfaces of the 323 selected teeth on the intraoral radiographs were evaluated by two independent observers using an AI-based (Diagnocat) system. The presence or absence of carious lesions was recorded during Phase 1. After 4 months, the AI-aided human observers evaluated the same radiographs (Phase 2), and the advanced convolutional neural network (CNN) reassessed the radiographic data (Phase 3). Subsequently, data reflecting human disagreements were excluded (Phase 4). For each phase, the Cohen and Fleiss kappa values, as well as the sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of Diagnocat, were calculated.
During the four phases, the range of Cohen kappa values between the human observers and Diagnocat were κ=0.66–1, κ=0.58–0.7, and κ=0.49–0.7. The Fleiss kappa values were κ=0.57–0.8. The sensitivity, specificity and diagnostic accuracy values ranged between 0.51–0.76, 0.88–0.97 and 0.76–0.86, respectively.
The Diagnocat CNN supports the evaluation of intraoral radiographs for caries diagnosis, as determined by consensus between human and AI system observers.
Our study may aid in the understanding of deep learning-based systems developed for dental imaging modalities for dentists and contribute to expanding the body of results in the field of AI-supported dental radiology..</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38821394</pmid><doi>10.1016/j.jdent.2024.105105</doi><orcidid>https://orcid.org/0009-0009-2718-451X</orcidid><orcidid>https://orcid.org/0000-0002-5933-3956</orcidid><orcidid>https://orcid.org/0009-0008-4196-024X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-5712 |
ispartof | Journal of dentistry, 2024-08, Vol.147, p.105105, Article 105105 |
issn | 0300-5712 1879-176X 1879-176X |
language | eng |
recordid | cdi_proquest_miscellaneous_3063463644 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adult Artificial Intelligence Deep learning Dental caries Dental Caries - diagnostic imaging Dental digital radiography Diagnostic imaging Female Humans Machine learning Male Neural Networks, Computer Radiography, Bitewing Radiography, Dental - methods Reproducibility of Results Sensitivity and Specificity |
title | Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A03%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20of%20artificial%20intelligence%20application%20for%20dental%20caries%20diagnosis%20on%20intraoral%20bitewing%20and%20periapical%20radiographs&rft.jtitle=Journal%20of%20dentistry&rft.au=Szab%C3%B3,%20Viktor&rft.date=2024-08&rft.volume=147&rft.spage=105105&rft.pages=105105-&rft.artnum=105105&rft.issn=0300-5712&rft.eissn=1879-176X&rft_id=info:doi/10.1016/j.jdent.2024.105105&rft_dat=%3Cproquest_cross%3E3063463644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3063463644&rft_id=info:pmid/38821394&rft_els_id=S0300571224002744&rfr_iscdi=true |