An inclusive anatomical network analysis of human craniocerebral topology

The human brain's complex morphology is spatially constrained by numerous intrinsic and extrinsic physical interactions. Spatial constraints help to identify the source of morphological variability and can be investigated by employing anatomical network analysis. Here, a model of human cranioce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of anatomy 2024-11, Vol.245 (5), p.686-698
Hauptverfasser: Schuurman, Tim, Bruner, Emiliano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 698
container_issue 5
container_start_page 686
container_title Journal of anatomy
container_volume 245
creator Schuurman, Tim
Bruner, Emiliano
description The human brain's complex morphology is spatially constrained by numerous intrinsic and extrinsic physical interactions. Spatial constraints help to identify the source of morphological variability and can be investigated by employing anatomical network analysis. Here, a model of human craniocerebral topology is presented, based on the bony elements of the skull at birth and a previously designed model of the brain. The goal was to investigate the topological components fundamental to the craniocerebral geometric balance, to identify underlying phenotypic patterns of spatial arrangement, and to understand how these patterns might have influenced the evolution of human brain morphology. Analysis of the craniocerebral network model revealed that the combined structure of the body and lesser wings of the sphenoid bone, the parahippocampal gyrus, and the parietal and ethmoid bones are susceptible to sustain and apply major spatial constraints that are likely to limit or channel their morphological evolution. The results also showcase a high level of global integration and efficient diffusion of biomechanical forces across the craniocerebral system, a fundamental aspect of morphological variability in terms of plasticity. Finally, community detection in the craniocerebral system highlights the concurrence of a longitudinal and a vertical modular partition. The former reflects the distinct morphogenetic environments of the three endocranial fossae, while the latter corresponds to those of the basicranium and calvaria. An anatomical network model of the human brain and skull is presented, as to localise key regions in the system's geometric balance, to identify phenotypic patterns of spatial arrangement, and to understand the influence of these patterns in the evolution of brain morphology. Results reveal the topological relevance of the components that act as intermediaries between the soft and hard tissues of the head, as well as a modular partition that reflects the morphological organisation of the skull.
doi_str_mv 10.1111/joa.14068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3063462649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115768208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2438-fc1e6db0b40d86939ee2ac8dd7fe17a5e61a1399936aca08defafaa2eaa7c4263</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgWgpDPwBFIkFhrT-SB17rCo-iip1gTm6OhdISeJiN1T597i0MCDh5STruVe6l5BLRocsvNHKwpAlVKoj0meJ1HE6VvSY9CnlLFap4j1y5v2KUiaoTk5JTyjFudSqT2aTJiobU7W-_MQIGtjYujRQRQ1utta9776qzpc-skX01tbQRMZBU1qDDpcuwI1d28q-dufkpIDK48VhDsjL_d3z9DGeLx5m08k8NjwRKi4MQ5kv6TKhuZJaaEQORuV5WiBLYYySARNaayHBAFU5FlAAcARITcKlGJCbfe7a2Y8W_SarS2-wqqBB2_pMUCkSyWWiA73-Q1e2deGgoBgbp1JxqoK63SvjrPcOi2ztyhpclzGa7foNW5B99xvs1SGxXdaY_8qfQgMY7cG2rLD7Pyl7Wkz2kV-m2IVB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115768208</pqid></control><display><type>article</type><title>An inclusive anatomical network analysis of human craniocerebral topology</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Schuurman, Tim ; Bruner, Emiliano</creator><creatorcontrib>Schuurman, Tim ; Bruner, Emiliano</creatorcontrib><description>The human brain's complex morphology is spatially constrained by numerous intrinsic and extrinsic physical interactions. Spatial constraints help to identify the source of morphological variability and can be investigated by employing anatomical network analysis. Here, a model of human craniocerebral topology is presented, based on the bony elements of the skull at birth and a previously designed model of the brain. The goal was to investigate the topological components fundamental to the craniocerebral geometric balance, to identify underlying phenotypic patterns of spatial arrangement, and to understand how these patterns might have influenced the evolution of human brain morphology. Analysis of the craniocerebral network model revealed that the combined structure of the body and lesser wings of the sphenoid bone, the parahippocampal gyrus, and the parietal and ethmoid bones are susceptible to sustain and apply major spatial constraints that are likely to limit or channel their morphological evolution. The results also showcase a high level of global integration and efficient diffusion of biomechanical forces across the craniocerebral system, a fundamental aspect of morphological variability in terms of plasticity. Finally, community detection in the craniocerebral system highlights the concurrence of a longitudinal and a vertical modular partition. The former reflects the distinct morphogenetic environments of the three endocranial fossae, while the latter corresponds to those of the basicranium and calvaria. An anatomical network model of the human brain and skull is presented, as to localise key regions in the system's geometric balance, to identify phenotypic patterns of spatial arrangement, and to understand the influence of these patterns in the evolution of brain morphology. Results reveal the topological relevance of the components that act as intermediaries between the soft and hard tissues of the head, as well as a modular partition that reflects the morphological organisation of the skull.</description><identifier>ISSN: 0021-8782</identifier><identifier>ISSN: 1469-7580</identifier><identifier>EISSN: 1469-7580</identifier><identifier>DOI: 10.1111/joa.14068</identifier><identifier>PMID: 38822698</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Basicranium ; Biological Evolution ; Brain ; Brain - anatomy &amp; histology ; Calvaria ; cerebral morphology ; functional craniology ; Genetic variability ; Humans ; integration ; Models, Anatomic ; modularity ; Morphology ; network theory ; Parahippocampal gyrus ; Parietal bone ; Skull - anatomy &amp; histology ; spatial constraints</subject><ispartof>Journal of anatomy, 2024-11, Vol.245 (5), p.686-698</ispartof><rights>2024 Anatomical Society.</rights><rights>Journal of Anatomy © 2024 Anatomical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2438-fc1e6db0b40d86939ee2ac8dd7fe17a5e61a1399936aca08defafaa2eaa7c4263</cites><orcidid>0000-0002-9780-0973 ; 0000-0002-6686-4616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjoa.14068$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjoa.14068$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38822698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schuurman, Tim</creatorcontrib><creatorcontrib>Bruner, Emiliano</creatorcontrib><title>An inclusive anatomical network analysis of human craniocerebral topology</title><title>Journal of anatomy</title><addtitle>J Anat</addtitle><description>The human brain's complex morphology is spatially constrained by numerous intrinsic and extrinsic physical interactions. Spatial constraints help to identify the source of morphological variability and can be investigated by employing anatomical network analysis. Here, a model of human craniocerebral topology is presented, based on the bony elements of the skull at birth and a previously designed model of the brain. The goal was to investigate the topological components fundamental to the craniocerebral geometric balance, to identify underlying phenotypic patterns of spatial arrangement, and to understand how these patterns might have influenced the evolution of human brain morphology. Analysis of the craniocerebral network model revealed that the combined structure of the body and lesser wings of the sphenoid bone, the parahippocampal gyrus, and the parietal and ethmoid bones are susceptible to sustain and apply major spatial constraints that are likely to limit or channel their morphological evolution. The results also showcase a high level of global integration and efficient diffusion of biomechanical forces across the craniocerebral system, a fundamental aspect of morphological variability in terms of plasticity. Finally, community detection in the craniocerebral system highlights the concurrence of a longitudinal and a vertical modular partition. The former reflects the distinct morphogenetic environments of the three endocranial fossae, while the latter corresponds to those of the basicranium and calvaria. An anatomical network model of the human brain and skull is presented, as to localise key regions in the system's geometric balance, to identify phenotypic patterns of spatial arrangement, and to understand the influence of these patterns in the evolution of brain morphology. Results reveal the topological relevance of the components that act as intermediaries between the soft and hard tissues of the head, as well as a modular partition that reflects the morphological organisation of the skull.</description><subject>Basicranium</subject><subject>Biological Evolution</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Calvaria</subject><subject>cerebral morphology</subject><subject>functional craniology</subject><subject>Genetic variability</subject><subject>Humans</subject><subject>integration</subject><subject>Models, Anatomic</subject><subject>modularity</subject><subject>Morphology</subject><subject>network theory</subject><subject>Parahippocampal gyrus</subject><subject>Parietal bone</subject><subject>Skull - anatomy &amp; histology</subject><subject>spatial constraints</subject><issn>0021-8782</issn><issn>1469-7580</issn><issn>1469-7580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10D1PwzAQBmALgWgpDPwBFIkFhrT-SB17rCo-iip1gTm6OhdISeJiN1T597i0MCDh5STruVe6l5BLRocsvNHKwpAlVKoj0meJ1HE6VvSY9CnlLFap4j1y5v2KUiaoTk5JTyjFudSqT2aTJiobU7W-_MQIGtjYujRQRQ1utta9776qzpc-skX01tbQRMZBU1qDDpcuwI1d28q-dufkpIDK48VhDsjL_d3z9DGeLx5m08k8NjwRKi4MQ5kv6TKhuZJaaEQORuV5WiBLYYySARNaayHBAFU5FlAAcARITcKlGJCbfe7a2Y8W_SarS2-wqqBB2_pMUCkSyWWiA73-Q1e2deGgoBgbp1JxqoK63SvjrPcOi2ztyhpclzGa7foNW5B99xvs1SGxXdaY_8qfQgMY7cG2rLD7Pyl7Wkz2kV-m2IVB</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Schuurman, Tim</creator><creator>Bruner, Emiliano</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9780-0973</orcidid><orcidid>https://orcid.org/0000-0002-6686-4616</orcidid></search><sort><creationdate>202411</creationdate><title>An inclusive anatomical network analysis of human craniocerebral topology</title><author>Schuurman, Tim ; Bruner, Emiliano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2438-fc1e6db0b40d86939ee2ac8dd7fe17a5e61a1399936aca08defafaa2eaa7c4263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Basicranium</topic><topic>Biological Evolution</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Calvaria</topic><topic>cerebral morphology</topic><topic>functional craniology</topic><topic>Genetic variability</topic><topic>Humans</topic><topic>integration</topic><topic>Models, Anatomic</topic><topic>modularity</topic><topic>Morphology</topic><topic>network theory</topic><topic>Parahippocampal gyrus</topic><topic>Parietal bone</topic><topic>Skull - anatomy &amp; histology</topic><topic>spatial constraints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuurman, Tim</creatorcontrib><creatorcontrib>Bruner, Emiliano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of anatomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuurman, Tim</au><au>Bruner, Emiliano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An inclusive anatomical network analysis of human craniocerebral topology</atitle><jtitle>Journal of anatomy</jtitle><addtitle>J Anat</addtitle><date>2024-11</date><risdate>2024</risdate><volume>245</volume><issue>5</issue><spage>686</spage><epage>698</epage><pages>686-698</pages><issn>0021-8782</issn><issn>1469-7580</issn><eissn>1469-7580</eissn><abstract>The human brain's complex morphology is spatially constrained by numerous intrinsic and extrinsic physical interactions. Spatial constraints help to identify the source of morphological variability and can be investigated by employing anatomical network analysis. Here, a model of human craniocerebral topology is presented, based on the bony elements of the skull at birth and a previously designed model of the brain. The goal was to investigate the topological components fundamental to the craniocerebral geometric balance, to identify underlying phenotypic patterns of spatial arrangement, and to understand how these patterns might have influenced the evolution of human brain morphology. Analysis of the craniocerebral network model revealed that the combined structure of the body and lesser wings of the sphenoid bone, the parahippocampal gyrus, and the parietal and ethmoid bones are susceptible to sustain and apply major spatial constraints that are likely to limit or channel their morphological evolution. The results also showcase a high level of global integration and efficient diffusion of biomechanical forces across the craniocerebral system, a fundamental aspect of morphological variability in terms of plasticity. Finally, community detection in the craniocerebral system highlights the concurrence of a longitudinal and a vertical modular partition. The former reflects the distinct morphogenetic environments of the three endocranial fossae, while the latter corresponds to those of the basicranium and calvaria. An anatomical network model of the human brain and skull is presented, as to localise key regions in the system's geometric balance, to identify phenotypic patterns of spatial arrangement, and to understand the influence of these patterns in the evolution of brain morphology. Results reveal the topological relevance of the components that act as intermediaries between the soft and hard tissues of the head, as well as a modular partition that reflects the morphological organisation of the skull.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38822698</pmid><doi>10.1111/joa.14068</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9780-0973</orcidid><orcidid>https://orcid.org/0000-0002-6686-4616</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8782
ispartof Journal of anatomy, 2024-11, Vol.245 (5), p.686-698
issn 0021-8782
1469-7580
1469-7580
language eng
recordid cdi_proquest_miscellaneous_3063462649
source MEDLINE; Wiley Journals
subjects Basicranium
Biological Evolution
Brain
Brain - anatomy & histology
Calvaria
cerebral morphology
functional craniology
Genetic variability
Humans
integration
Models, Anatomic
modularity
Morphology
network theory
Parahippocampal gyrus
Parietal bone
Skull - anatomy & histology
spatial constraints
title An inclusive anatomical network analysis of human craniocerebral topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20inclusive%20anatomical%20network%20analysis%20of%20human%20craniocerebral%20topology&rft.jtitle=Journal%20of%20anatomy&rft.au=Schuurman,%20Tim&rft.date=2024-11&rft.volume=245&rft.issue=5&rft.spage=686&rft.epage=698&rft.pages=686-698&rft.issn=0021-8782&rft.eissn=1469-7580&rft_id=info:doi/10.1111/joa.14068&rft_dat=%3Cproquest_cross%3E3115768208%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115768208&rft_id=info:pmid/38822698&rfr_iscdi=true