Engineering Single‐Atom Sites with the Irving–Williams Series for the Simultaneous Co‐photocatalytic CO2 Reduction and CH3CHO Oxidation

The bonding effects between 3d transition‐metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition‐metal atoms of the spontaneous geometrical distortions, that is the Jahn–Teller effect, can alter CFSE, thereby leading to the Irving–Williams series....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-08, Vol.63 (33), p.e202407975-n/a
Hauptverfasser: Li, Jian, Du, Minghao, Wu, Zhenfa, Zhang, Xinru, Xue, Wenjuan, Huang, Hongliang, Zhong, Chongli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e202407975
container_title Angewandte Chemie International Edition
container_volume 63
creator Li, Jian
Du, Minghao
Wu, Zhenfa
Zhang, Xinru
Xue, Wenjuan
Huang, Hongliang
Zhong, Chongli
description The bonding effects between 3d transition‐metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition‐metal atoms of the spontaneous geometrical distortions, that is the Jahn–Teller effect, can alter CFSE, thereby leading to the Irving–Williams series. However, engineering single‐atom sites (SASs) using the Irving–Williams series as an ideal guideline has not been reported to date. Herein, alkynyl‐linked covalent phenanthroline frameworks (CPFs) with phenanthroline units are developed to anchor the desired 3d single metal ions from d5 to d10 (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+). The Irving–Williams series was employed to accurately predict the bonding effects between 3d transition‐metal atoms and phenanthroline units. To verify this, theoretical calculations and experimental results reveal that Cu‐SASs/CPFs exhibits higher stability and faster charge‐transfer efficiency, far surpassing other metal‐SASs/CPFs. As expected, Cu‐SASs/CPFs demonstrates a high photoreduction of CO2‐to‐CO activity (~30.3 μmol ⋅ g−1 ⋅ h−1) and an exceptional photooxidation of CH3CHO‐to‐CH3COOH activity (~24.7 μmol ⋅ g−1 ⋅ h−1). Interestingly, the generated *O2− is derived from the process of CO2 reduction, thereby triggering a CH3CHO oxidation reaction. This work provides a novel design concept for designing SASs by the Irving–Williams to regulate the catalytic performances. In order to engineer single‐atom sites from d5 to d10, the Irving–Williams series was employed to accurately predict the highest stability and fastest charge‐transfer efficiency. As predicted, Cu‐SASs/CPFs exhibits a higher activity towards the photoreduction of CO2‐to‐CO and the photooxidation of CH3CHO‐to‐CH3COOH, far surpassing other metal‐SASs/CPFs.
doi_str_mv 10.1002/anie.202407975
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3063460754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3063460754</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1965-4fcd0f3ca9ea18faf9e5debe8fef532cabc41eeb56661e13dd4aa549ce96a6a93</originalsourceid><addsrcrecordid>eNpdkcFq20AQhkVpIK7Ta88LvfQiZ1erXWmPRri1IcQQp_QoxqtRvGaldaVVXd_yAoVA3tBPknUccuhlZv6Zb4aBP4q-MDphlCbX0BqcJDRJaaYy8SEaMZGwmGcZ_xjqlPM4ywW7jD71_TbweU7lKPo3ax9Mi9iZ9oGsQrB4fHyaetcE5bEne-M3xG-QLLo_YXx8fP5lrDXQ9GQVtgJRu-4VWJlmsB5adENPChfO7DbOOw0e7MEbTYplQu6wGrQ3riXQVqSY82K-JMu_poJT8yq6qMH2-Pktj6Of32f3xTy-Wf5YFNObeMeUFHFa64rWXINCYHkNtUJR4RrzGmvBEw1rnTLEtZBSMmS8qlIAkSqNSoIExcfRt_PdXed-D9j7sjG9RmvP35ecSp5Kmok0oF__Q7du6NrwXaDyTCWC5zJQ6kztjcVDuetMA92hZLQ8WVOerCnfrSmnt4vZu-Iv7MuKmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087925386</pqid></control><display><type>article</type><title>Engineering Single‐Atom Sites with the Irving–Williams Series for the Simultaneous Co‐photocatalytic CO2 Reduction and CH3CHO Oxidation</title><source>Wiley Online Library All Journals</source><creator>Li, Jian ; Du, Minghao ; Wu, Zhenfa ; Zhang, Xinru ; Xue, Wenjuan ; Huang, Hongliang ; Zhong, Chongli</creator><creatorcontrib>Li, Jian ; Du, Minghao ; Wu, Zhenfa ; Zhang, Xinru ; Xue, Wenjuan ; Huang, Hongliang ; Zhong, Chongli</creatorcontrib><description>The bonding effects between 3d transition‐metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition‐metal atoms of the spontaneous geometrical distortions, that is the Jahn–Teller effect, can alter CFSE, thereby leading to the Irving–Williams series. However, engineering single‐atom sites (SASs) using the Irving–Williams series as an ideal guideline has not been reported to date. Herein, alkynyl‐linked covalent phenanthroline frameworks (CPFs) with phenanthroline units are developed to anchor the desired 3d single metal ions from d5 to d10 (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+). The Irving–Williams series was employed to accurately predict the bonding effects between 3d transition‐metal atoms and phenanthroline units. To verify this, theoretical calculations and experimental results reveal that Cu‐SASs/CPFs exhibits higher stability and faster charge‐transfer efficiency, far surpassing other metal‐SASs/CPFs. As expected, Cu‐SASs/CPFs demonstrates a high photoreduction of CO2‐to‐CO activity (~30.3 μmol ⋅ g−1 ⋅ h−1) and an exceptional photooxidation of CH3CHO‐to‐CH3COOH activity (~24.7 μmol ⋅ g−1 ⋅ h−1). Interestingly, the generated *O2− is derived from the process of CO2 reduction, thereby triggering a CH3CHO oxidation reaction. This work provides a novel design concept for designing SASs by the Irving–Williams to regulate the catalytic performances. In order to engineer single‐atom sites from d5 to d10, the Irving–Williams series was employed to accurately predict the highest stability and fastest charge‐transfer efficiency. As predicted, Cu‐SASs/CPFs exhibits a higher activity towards the photoreduction of CO2‐to‐CO and the photooxidation of CH3CHO‐to‐CH3COOH, far surpassing other metal‐SASs/CPFs.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202407975</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bonding ; Carbon dioxide ; Charge efficiency ; Chemical bonds ; CO2 Reduction ; Cobalt ; Copper ; Jahn-Teller effect ; Manganese ions ; Metal ions ; Metals ; Oxidation ; Photocatalysis ; Photooxidation ; Photoreduction ; Porous Organic Polymers ; Single-Atom Sites ; Zinc</subject><ispartof>Angewandte Chemie International Edition, 2024-08, Vol.63 (33), p.e202407975-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0004-0670-6626 ; 0000-0001-9690-9259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202407975$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202407975$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Du, Minghao</creatorcontrib><creatorcontrib>Wu, Zhenfa</creatorcontrib><creatorcontrib>Zhang, Xinru</creatorcontrib><creatorcontrib>Xue, Wenjuan</creatorcontrib><creatorcontrib>Huang, Hongliang</creatorcontrib><creatorcontrib>Zhong, Chongli</creatorcontrib><title>Engineering Single‐Atom Sites with the Irving–Williams Series for the Simultaneous Co‐photocatalytic CO2 Reduction and CH3CHO Oxidation</title><title>Angewandte Chemie International Edition</title><description>The bonding effects between 3d transition‐metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition‐metal atoms of the spontaneous geometrical distortions, that is the Jahn–Teller effect, can alter CFSE, thereby leading to the Irving–Williams series. However, engineering single‐atom sites (SASs) using the Irving–Williams series as an ideal guideline has not been reported to date. Herein, alkynyl‐linked covalent phenanthroline frameworks (CPFs) with phenanthroline units are developed to anchor the desired 3d single metal ions from d5 to d10 (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+). The Irving–Williams series was employed to accurately predict the bonding effects between 3d transition‐metal atoms and phenanthroline units. To verify this, theoretical calculations and experimental results reveal that Cu‐SASs/CPFs exhibits higher stability and faster charge‐transfer efficiency, far surpassing other metal‐SASs/CPFs. As expected, Cu‐SASs/CPFs demonstrates a high photoreduction of CO2‐to‐CO activity (~30.3 μmol ⋅ g−1 ⋅ h−1) and an exceptional photooxidation of CH3CHO‐to‐CH3COOH activity (~24.7 μmol ⋅ g−1 ⋅ h−1). Interestingly, the generated *O2− is derived from the process of CO2 reduction, thereby triggering a CH3CHO oxidation reaction. This work provides a novel design concept for designing SASs by the Irving–Williams to regulate the catalytic performances. In order to engineer single‐atom sites from d5 to d10, the Irving–Williams series was employed to accurately predict the highest stability and fastest charge‐transfer efficiency. As predicted, Cu‐SASs/CPFs exhibits a higher activity towards the photoreduction of CO2‐to‐CO and the photooxidation of CH3CHO‐to‐CH3COOH, far surpassing other metal‐SASs/CPFs.</description><subject>Bonding</subject><subject>Carbon dioxide</subject><subject>Charge efficiency</subject><subject>Chemical bonds</subject><subject>CO2 Reduction</subject><subject>Cobalt</subject><subject>Copper</subject><subject>Jahn-Teller effect</subject><subject>Manganese ions</subject><subject>Metal ions</subject><subject>Metals</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photooxidation</subject><subject>Photoreduction</subject><subject>Porous Organic Polymers</subject><subject>Single-Atom Sites</subject><subject>Zinc</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkcFq20AQhkVpIK7Ta88LvfQiZ1erXWmPRri1IcQQp_QoxqtRvGaldaVVXd_yAoVA3tBPknUccuhlZv6Zb4aBP4q-MDphlCbX0BqcJDRJaaYy8SEaMZGwmGcZ_xjqlPM4ywW7jD71_TbweU7lKPo3ax9Mi9iZ9oGsQrB4fHyaetcE5bEne-M3xG-QLLo_YXx8fP5lrDXQ9GQVtgJRu-4VWJlmsB5adENPChfO7DbOOw0e7MEbTYplQu6wGrQ3riXQVqSY82K-JMu_poJT8yq6qMH2-Pktj6Of32f3xTy-Wf5YFNObeMeUFHFa64rWXINCYHkNtUJR4RrzGmvBEw1rnTLEtZBSMmS8qlIAkSqNSoIExcfRt_PdXed-D9j7sjG9RmvP35ecSp5Kmok0oF__Q7du6NrwXaDyTCWC5zJQ6kztjcVDuetMA92hZLQ8WVOerCnfrSmnt4vZu-Iv7MuKmw</recordid><startdate>20240812</startdate><enddate>20240812</enddate><creator>Li, Jian</creator><creator>Du, Minghao</creator><creator>Wu, Zhenfa</creator><creator>Zhang, Xinru</creator><creator>Xue, Wenjuan</creator><creator>Huang, Hongliang</creator><creator>Zhong, Chongli</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0004-0670-6626</orcidid><orcidid>https://orcid.org/0000-0001-9690-9259</orcidid></search><sort><creationdate>20240812</creationdate><title>Engineering Single‐Atom Sites with the Irving–Williams Series for the Simultaneous Co‐photocatalytic CO2 Reduction and CH3CHO Oxidation</title><author>Li, Jian ; Du, Minghao ; Wu, Zhenfa ; Zhang, Xinru ; Xue, Wenjuan ; Huang, Hongliang ; Zhong, Chongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1965-4fcd0f3ca9ea18faf9e5debe8fef532cabc41eeb56661e13dd4aa549ce96a6a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bonding</topic><topic>Carbon dioxide</topic><topic>Charge efficiency</topic><topic>Chemical bonds</topic><topic>CO2 Reduction</topic><topic>Cobalt</topic><topic>Copper</topic><topic>Jahn-Teller effect</topic><topic>Manganese ions</topic><topic>Metal ions</topic><topic>Metals</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photooxidation</topic><topic>Photoreduction</topic><topic>Porous Organic Polymers</topic><topic>Single-Atom Sites</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Du, Minghao</creatorcontrib><creatorcontrib>Wu, Zhenfa</creatorcontrib><creatorcontrib>Zhang, Xinru</creatorcontrib><creatorcontrib>Xue, Wenjuan</creatorcontrib><creatorcontrib>Huang, Hongliang</creatorcontrib><creatorcontrib>Zhong, Chongli</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jian</au><au>Du, Minghao</au><au>Wu, Zhenfa</au><au>Zhang, Xinru</au><au>Xue, Wenjuan</au><au>Huang, Hongliang</au><au>Zhong, Chongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Single‐Atom Sites with the Irving–Williams Series for the Simultaneous Co‐photocatalytic CO2 Reduction and CH3CHO Oxidation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-08-12</date><risdate>2024</risdate><volume>63</volume><issue>33</issue><spage>e202407975</spage><epage>n/a</epage><pages>e202407975-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>The bonding effects between 3d transition‐metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition‐metal atoms of the spontaneous geometrical distortions, that is the Jahn–Teller effect, can alter CFSE, thereby leading to the Irving–Williams series. However, engineering single‐atom sites (SASs) using the Irving–Williams series as an ideal guideline has not been reported to date. Herein, alkynyl‐linked covalent phenanthroline frameworks (CPFs) with phenanthroline units are developed to anchor the desired 3d single metal ions from d5 to d10 (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+). The Irving–Williams series was employed to accurately predict the bonding effects between 3d transition‐metal atoms and phenanthroline units. To verify this, theoretical calculations and experimental results reveal that Cu‐SASs/CPFs exhibits higher stability and faster charge‐transfer efficiency, far surpassing other metal‐SASs/CPFs. As expected, Cu‐SASs/CPFs demonstrates a high photoreduction of CO2‐to‐CO activity (~30.3 μmol ⋅ g−1 ⋅ h−1) and an exceptional photooxidation of CH3CHO‐to‐CH3COOH activity (~24.7 μmol ⋅ g−1 ⋅ h−1). Interestingly, the generated *O2− is derived from the process of CO2 reduction, thereby triggering a CH3CHO oxidation reaction. This work provides a novel design concept for designing SASs by the Irving–Williams to regulate the catalytic performances. In order to engineer single‐atom sites from d5 to d10, the Irving–Williams series was employed to accurately predict the highest stability and fastest charge‐transfer efficiency. As predicted, Cu‐SASs/CPFs exhibits a higher activity towards the photoreduction of CO2‐to‐CO and the photooxidation of CH3CHO‐to‐CH3COOH, far surpassing other metal‐SASs/CPFs.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202407975</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0009-0004-0670-6626</orcidid><orcidid>https://orcid.org/0000-0001-9690-9259</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-08, Vol.63 (33), p.e202407975-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3063460754
source Wiley Online Library All Journals
subjects Bonding
Carbon dioxide
Charge efficiency
Chemical bonds
CO2 Reduction
Cobalt
Copper
Jahn-Teller effect
Manganese ions
Metal ions
Metals
Oxidation
Photocatalysis
Photooxidation
Photoreduction
Porous Organic Polymers
Single-Atom Sites
Zinc
title Engineering Single‐Atom Sites with the Irving–Williams Series for the Simultaneous Co‐photocatalytic CO2 Reduction and CH3CHO Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Single%E2%80%90Atom%20Sites%20with%20the%20Irving%E2%80%93Williams%20Series%20for%20the%20Simultaneous%20Co%E2%80%90photocatalytic%20CO2%20Reduction%20and%20CH3CHO%20Oxidation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Li,%20Jian&rft.date=2024-08-12&rft.volume=63&rft.issue=33&rft.spage=e202407975&rft.epage=n/a&rft.pages=e202407975-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202407975&rft_dat=%3Cproquest_wiley%3E3063460754%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087925386&rft_id=info:pmid/&rfr_iscdi=true