Medical Artificial Intelligence and Human Values

Key PointsMedical Artificial Intelligence and Human ValuesAs large language models and other artificial intelligence models are used more in medicine, ethical dilemmas can arise depending on how the model was trained. A user must understand how human decisions and values can shape model outputs. Med...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New England journal of medicine 2024-05, Vol.390 (20), p.1895-1904
Hauptverfasser: Yu, Kun-Hsing, Healey, Elizabeth, Leong, Tze-Yun, Kohane, Isaac S., Manrai, Arjun K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1904
container_issue 20
container_start_page 1895
container_title The New England journal of medicine
container_volume 390
creator Yu, Kun-Hsing
Healey, Elizabeth
Leong, Tze-Yun
Kohane, Isaac S.
Manrai, Arjun K.
description Key PointsMedical Artificial Intelligence and Human ValuesAs large language models and other artificial intelligence models are used more in medicine, ethical dilemmas can arise depending on how the model was trained. A user must understand how human decisions and values can shape model outputs. Medical decision analysis offers lessons on measuring human values.A large language model will respond differently depending on the exact way a query is worded and how the model was directed by its makers and users. Caution is advised when considering the use of model output in decision making.
doi_str_mv 10.1056/NEJMra2214183
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3062531768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061984025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-6677c8d4356c47fc4d99a61caf2c958a856896f61b8d68ae914f687c276ebd393</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgiq3Vo1cpiOBlNbPJzk6OUqqttHpRr0uazcqW_ajJ7sF_b0qroOBcMoeHN8PL2DnwG-AJ3j5NH5dOxzFIIHHAhpAIEUnJ8ZANOY8pkqkSA3bi_ZqHAamO2UAQAQfCIeNLm5dGV-M715VFacqwzpvOVlX5bhtjx7rJx7O-1s34TVe99afsqNCVt2f7d8Re76cvk1m0eH6YT-4WkYkJuggxTQ3lUiRoZFoYmSulEYwuYqMS0pQgKSwQVpQjaatAFkipiVO0q1woMWLXu9yNaz_Cv11Wl96Eu3Rj295ngmOcCEiRAr38Q9dt75pw3VaBIskDHbFop4xrvXe2yDaurLX7zIBn2yqzX1UGf7FP7Ve1zX_0d3cBXO1AXfussev6n6Ava2B3UA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061984025</pqid></control><display><type>article</type><title>Medical Artificial Intelligence and Human Values</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>New England Journal of Medicine</source><creator>Yu, Kun-Hsing ; Healey, Elizabeth ; Leong, Tze-Yun ; Kohane, Isaac S. ; Manrai, Arjun K.</creator><contributor>Drazen, Jeffrey M.</contributor><creatorcontrib>Yu, Kun-Hsing ; Healey, Elizabeth ; Leong, Tze-Yun ; Kohane, Isaac S. ; Manrai, Arjun K. ; Drazen, Jeffrey M.</creatorcontrib><description>Key PointsMedical Artificial Intelligence and Human ValuesAs large language models and other artificial intelligence models are used more in medicine, ethical dilemmas can arise depending on how the model was trained. A user must understand how human decisions and values can shape model outputs. Medical decision analysis offers lessons on measuring human values.A large language model will respond differently depending on the exact way a query is worded and how the model was directed by its makers and users. Caution is advised when considering the use of model output in decision making.</description><identifier>ISSN: 0028-4793</identifier><identifier>ISSN: 1533-4406</identifier><identifier>EISSN: 1533-4406</identifier><identifier>DOI: 10.1056/NEJMra2214183</identifier><identifier>PMID: 38810186</identifier><language>eng</language><publisher>United States: Massachusetts Medical Society</publisher><subject>Accuracy ; and Education ; and Education General ; Artificial intelligence ; Artificial Intelligence - ethics ; Artificial Intelligence - standards ; Bias ; Chronic Kidney Disease ; Clinical Decision-Making - ethics ; Clinical Reasoning ; Creatinine ; Decision making ; Emergency Medicine ; Emergency Medicine General ; Growth and Development ; Growth hormones ; Health Care Delivery ; Health IT ; Health Policy ; Humans ; Kidney Transplantation ; Language ; Medical Ethics ; Medical Practice ; Nephrology ; Nephrology General ; Pediatrics ; Pediatrics General ; Pharmaceutical industry ; Prescription drugs ; Quality of Care ; Risk ; Social Values ; Surgery ; Surgery General ; Training ; Transplantation</subject><ispartof>The New England journal of medicine, 2024-05, Vol.390 (20), p.1895-1904</ispartof><rights>Copyright © 2024 Massachusetts Medical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-6677c8d4356c47fc4d99a61caf2c958a856896f61b8d68ae914f687c276ebd393</citedby><cites>FETCH-LOGICAL-c281t-6677c8d4356c47fc4d99a61caf2c958a856896f61b8d68ae914f687c276ebd393</cites><orcidid>0000-0001-9892-8218 ; 0000-0001-9657-9800</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.nejm.org/doi/pdf/10.1056/NEJMra2214183$$EPDF$$P50$$Gmms$$H</linktopdf><linktohtml>$$Uhttps://www.nejm.org/doi/full/10.1056/NEJMra2214183$$EHTML$$P50$$Gmms$$H</linktohtml><link.rule.ids>314,776,780,2746,2747,26080,27901,27902,52357,54039</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38810186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Drazen, Jeffrey M.</contributor><creatorcontrib>Yu, Kun-Hsing</creatorcontrib><creatorcontrib>Healey, Elizabeth</creatorcontrib><creatorcontrib>Leong, Tze-Yun</creatorcontrib><creatorcontrib>Kohane, Isaac S.</creatorcontrib><creatorcontrib>Manrai, Arjun K.</creatorcontrib><title>Medical Artificial Intelligence and Human Values</title><title>The New England journal of medicine</title><addtitle>N Engl J Med</addtitle><description>Key PointsMedical Artificial Intelligence and Human ValuesAs large language models and other artificial intelligence models are used more in medicine, ethical dilemmas can arise depending on how the model was trained. A user must understand how human decisions and values can shape model outputs. Medical decision analysis offers lessons on measuring human values.A large language model will respond differently depending on the exact way a query is worded and how the model was directed by its makers and users. Caution is advised when considering the use of model output in decision making.</description><subject>Accuracy</subject><subject>and Education</subject><subject>and Education General</subject><subject>Artificial intelligence</subject><subject>Artificial Intelligence - ethics</subject><subject>Artificial Intelligence - standards</subject><subject>Bias</subject><subject>Chronic Kidney Disease</subject><subject>Clinical Decision-Making - ethics</subject><subject>Clinical Reasoning</subject><subject>Creatinine</subject><subject>Decision making</subject><subject>Emergency Medicine</subject><subject>Emergency Medicine General</subject><subject>Growth and Development</subject><subject>Growth hormones</subject><subject>Health Care Delivery</subject><subject>Health IT</subject><subject>Health Policy</subject><subject>Humans</subject><subject>Kidney Transplantation</subject><subject>Language</subject><subject>Medical Ethics</subject><subject>Medical Practice</subject><subject>Nephrology</subject><subject>Nephrology General</subject><subject>Pediatrics</subject><subject>Pediatrics General</subject><subject>Pharmaceutical industry</subject><subject>Prescription drugs</subject><subject>Quality of Care</subject><subject>Risk</subject><subject>Social Values</subject><subject>Surgery</subject><subject>Surgery General</subject><subject>Training</subject><subject>Transplantation</subject><issn>0028-4793</issn><issn>1533-4406</issn><issn>1533-4406</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10E1LAzEQBuAgiq3Vo1cpiOBlNbPJzk6OUqqttHpRr0uazcqW_ajJ7sF_b0qroOBcMoeHN8PL2DnwG-AJ3j5NH5dOxzFIIHHAhpAIEUnJ8ZANOY8pkqkSA3bi_ZqHAamO2UAQAQfCIeNLm5dGV-M715VFacqwzpvOVlX5bhtjx7rJx7O-1s34TVe99afsqNCVt2f7d8Re76cvk1m0eH6YT-4WkYkJuggxTQ3lUiRoZFoYmSulEYwuYqMS0pQgKSwQVpQjaatAFkipiVO0q1woMWLXu9yNaz_Cv11Wl96Eu3Rj295ngmOcCEiRAr38Q9dt75pw3VaBIskDHbFop4xrvXe2yDaurLX7zIBn2yqzX1UGf7FP7Ve1zX_0d3cBXO1AXfussev6n6Ava2B3UA</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Yu, Kun-Hsing</creator><creator>Healey, Elizabeth</creator><creator>Leong, Tze-Yun</creator><creator>Kohane, Isaac S.</creator><creator>Manrai, Arjun K.</creator><general>Massachusetts Medical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0TZ</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K0Y</scope><scope>LK8</scope><scope>M0R</scope><scope>M0T</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9892-8218</orcidid><orcidid>https://orcid.org/0000-0001-9657-9800</orcidid></search><sort><creationdate>20240530</creationdate><title>Medical Artificial Intelligence and Human Values</title><author>Yu, Kun-Hsing ; Healey, Elizabeth ; Leong, Tze-Yun ; Kohane, Isaac S. ; Manrai, Arjun K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-6677c8d4356c47fc4d99a61caf2c958a856896f61b8d68ae914f687c276ebd393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>and Education</topic><topic>and Education General</topic><topic>Artificial intelligence</topic><topic>Artificial Intelligence - ethics</topic><topic>Artificial Intelligence - standards</topic><topic>Bias</topic><topic>Chronic Kidney Disease</topic><topic>Clinical Decision-Making - ethics</topic><topic>Clinical Reasoning</topic><topic>Creatinine</topic><topic>Decision making</topic><topic>Emergency Medicine</topic><topic>Emergency Medicine General</topic><topic>Growth and Development</topic><topic>Growth hormones</topic><topic>Health Care Delivery</topic><topic>Health IT</topic><topic>Health Policy</topic><topic>Humans</topic><topic>Kidney Transplantation</topic><topic>Language</topic><topic>Medical Ethics</topic><topic>Medical Practice</topic><topic>Nephrology</topic><topic>Nephrology General</topic><topic>Pediatrics</topic><topic>Pediatrics General</topic><topic>Pharmaceutical industry</topic><topic>Prescription drugs</topic><topic>Quality of Care</topic><topic>Risk</topic><topic>Social Values</topic><topic>Surgery</topic><topic>Surgery General</topic><topic>Training</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Kun-Hsing</creatorcontrib><creatorcontrib>Healey, Elizabeth</creatorcontrib><creatorcontrib>Leong, Tze-Yun</creatorcontrib><creatorcontrib>Kohane, Isaac S.</creatorcontrib><creatorcontrib>Manrai, Arjun K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Pharma and Biotech Premium PRO</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>New England Journal of Medicine</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The New England journal of medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Kun-Hsing</au><au>Healey, Elizabeth</au><au>Leong, Tze-Yun</au><au>Kohane, Isaac S.</au><au>Manrai, Arjun K.</au><au>Drazen, Jeffrey M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical Artificial Intelligence and Human Values</atitle><jtitle>The New England journal of medicine</jtitle><addtitle>N Engl J Med</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>390</volume><issue>20</issue><spage>1895</spage><epage>1904</epage><pages>1895-1904</pages><issn>0028-4793</issn><issn>1533-4406</issn><eissn>1533-4406</eissn><abstract>Key PointsMedical Artificial Intelligence and Human ValuesAs large language models and other artificial intelligence models are used more in medicine, ethical dilemmas can arise depending on how the model was trained. A user must understand how human decisions and values can shape model outputs. Medical decision analysis offers lessons on measuring human values.A large language model will respond differently depending on the exact way a query is worded and how the model was directed by its makers and users. Caution is advised when considering the use of model output in decision making.</abstract><cop>United States</cop><pub>Massachusetts Medical Society</pub><pmid>38810186</pmid><doi>10.1056/NEJMra2214183</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9892-8218</orcidid><orcidid>https://orcid.org/0000-0001-9657-9800</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-4793
ispartof The New England journal of medicine, 2024-05, Vol.390 (20), p.1895-1904
issn 0028-4793
1533-4406
1533-4406
language eng
recordid cdi_proquest_miscellaneous_3062531768
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; New England Journal of Medicine
subjects Accuracy
and Education
and Education General
Artificial intelligence
Artificial Intelligence - ethics
Artificial Intelligence - standards
Bias
Chronic Kidney Disease
Clinical Decision-Making - ethics
Clinical Reasoning
Creatinine
Decision making
Emergency Medicine
Emergency Medicine General
Growth and Development
Growth hormones
Health Care Delivery
Health IT
Health Policy
Humans
Kidney Transplantation
Language
Medical Ethics
Medical Practice
Nephrology
Nephrology General
Pediatrics
Pediatrics General
Pharmaceutical industry
Prescription drugs
Quality of Care
Risk
Social Values
Surgery
Surgery General
Training
Transplantation
title Medical Artificial Intelligence and Human Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20Artificial%20Intelligence%20and%20Human%20Values&rft.jtitle=The%20New%20England%20journal%20of%20medicine&rft.au=Yu,%20Kun-Hsing&rft.date=2024-05-30&rft.volume=390&rft.issue=20&rft.spage=1895&rft.epage=1904&rft.pages=1895-1904&rft.issn=0028-4793&rft.eissn=1533-4406&rft_id=info:doi/10.1056/NEJMra2214183&rft_dat=%3Cproquest_cross%3E3061984025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061984025&rft_id=info:pmid/38810186&rfr_iscdi=true