Alkaline‐Responsive, Self‐Healable, and Conductive Copolymer Composites with Enhanced Mechanical Properties Tailored for Wearable Tech

Despite significant advancements, current self‐healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self‐healable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-05, Vol.20 (40), p.e2402472-n/a
Hauptverfasser: Chang, Chia‐Wei, Wu, Chia‐Ti, Lo, Tse‐Yu, Chen, Yu, Chang, Chun‐Ting, Chen, Huan‐Ru, Chang, Chun‐Chi, Lee, Lin‐Ruei, Tseng, Yu‐Hsuan, Chen, Jiun‐Tai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page e2402472
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Chang, Chia‐Wei
Wu, Chia‐Ti
Lo, Tse‐Yu
Chen, Yu
Chang, Chun‐Ting
Chen, Huan‐Ru
Chang, Chun‐Chi
Lee, Lin‐Ruei
Tseng, Yu‐Hsuan
Chen, Jiun‐Tai
description Despite significant advancements, current self‐healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self‐healable and conductive copolymer, poly(ionic liquid‐co‐acrylic acid) (PIL‐co‐PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion‐dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self‐healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL‐co‐PAA/TPU films showcase alkaline‐responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL‐co‐PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self‐healing properties of commercial cotton fabrics coated with the self‐healable PIL‐co‐PAA are also investigated, demonstrating both self‐healing and electrical properties. This study advances the understanding of self‐healable conductive polymers and opens new avenues for their application in wearable technology. The research introduces a self‐healable and conductive copolymer, poly(ionic liquid‐co‐acrylic acid) (PIL‐co‐PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion‐dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self‐healing abilities and demonstrates enhanced mechanical properties and electrical conductivity.
doi_str_mv 10.1002/smll.202402472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3062529921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112464602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2982-3902233887e030ad532671585d1ab05fa7bbb9f365fab6c51366df9e535ecd793</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERT_gyhFF4tJDd_HH2omP1arQSluB6CKOluNMVBcnDnZCtTfOnPiN_SWd1ZZF4oJkya_Gj1_NzEvIa0bnjFL-LnchzDnlCzwlf0aOmGJipiqun-81o4fkOOc7SgVD6gU5FFXFRLmQR-TXefhmg-_h4efvz5CH2Gf_A86KGwgtli7BBlsHLNi-KZaxbyY3IoByiGHTQULVDTH7EXJx78fb4qK_tb2DprgGh8o7G4pPKQ6QRo_M2voQEz63MRVfwaatfbFG9iU5aG3I8OrpPiFf3l-sl5ez1ccPV8vz1cxxXfGZ0JRzgROUQAW1jRRclUxWsmG2prK1ZV3XuhUKZa2cZEKpptUghQTXlFqckNOd75Di9wnyaDqfHYRge4hTNoIqLrnWnCH69h_0Lk6px-6MYLhLtVCUIzXfUS7FnBO0Zki-s2ljGDXblMw2JbNPCT-8ebKd6g6aPf4nFgT0Drj3ATb_sTM316vVX_NHKBShRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112464602</pqid></control><display><type>article</type><title>Alkaline‐Responsive, Self‐Healable, and Conductive Copolymer Composites with Enhanced Mechanical Properties Tailored for Wearable Tech</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chang, Chia‐Wei ; Wu, Chia‐Ti ; Lo, Tse‐Yu ; Chen, Yu ; Chang, Chun‐Ting ; Chen, Huan‐Ru ; Chang, Chun‐Chi ; Lee, Lin‐Ruei ; Tseng, Yu‐Hsuan ; Chen, Jiun‐Tai</creator><creatorcontrib>Chang, Chia‐Wei ; Wu, Chia‐Ti ; Lo, Tse‐Yu ; Chen, Yu ; Chang, Chun‐Ting ; Chen, Huan‐Ru ; Chang, Chun‐Chi ; Lee, Lin‐Ruei ; Tseng, Yu‐Hsuan ; Chen, Jiun‐Tai</creatorcontrib><description>Despite significant advancements, current self‐healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self‐healable and conductive copolymer, poly(ionic liquid‐co‐acrylic acid) (PIL‐co‐PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion‐dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self‐healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL‐co‐PAA/TPU films showcase alkaline‐responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL‐co‐PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self‐healing properties of commercial cotton fabrics coated with the self‐healable PIL‐co‐PAA are also investigated, demonstrating both self‐healing and electrical properties. This study advances the understanding of self‐healable conductive polymers and opens new avenues for their application in wearable technology. The research introduces a self‐healable and conductive copolymer, poly(ionic liquid‐co‐acrylic acid) (PIL‐co‐PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion‐dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self‐healing abilities and demonstrates enhanced mechanical properties and electrical conductivity.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202402472</identifier><identifier>PMID: 38813745</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylic acid ; Chemical bonds ; Conducting polymers ; conductive ; Copolymers ; Cotton ; Dipole interactions ; Electrical properties ; Electrical resistivity ; Free radical polymerization ; Free radicals ; Healing ; Hydrogen bonds ; Ionic liquids ; Mechanical properties ; pH‐responsive ; poly(acrylic acid) ; poly(ionic liquid) ; Polyurethane resins ; self‐healing ; stretchable ; Tensile tests ; Textile composites ; Thermogravimetric analysis ; Ultimate tensile strength ; Urethane thermoplastic elastomers ; Wearable technology</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (40), p.e2402472-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2982-3902233887e030ad532671585d1ab05fa7bbb9f365fab6c51366df9e535ecd793</cites><orcidid>0000-0002-0662-782X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202402472$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202402472$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38813745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, Chia‐Wei</creatorcontrib><creatorcontrib>Wu, Chia‐Ti</creatorcontrib><creatorcontrib>Lo, Tse‐Yu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chang, Chun‐Ting</creatorcontrib><creatorcontrib>Chen, Huan‐Ru</creatorcontrib><creatorcontrib>Chang, Chun‐Chi</creatorcontrib><creatorcontrib>Lee, Lin‐Ruei</creatorcontrib><creatorcontrib>Tseng, Yu‐Hsuan</creatorcontrib><creatorcontrib>Chen, Jiun‐Tai</creatorcontrib><title>Alkaline‐Responsive, Self‐Healable, and Conductive Copolymer Composites with Enhanced Mechanical Properties Tailored for Wearable Tech</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Despite significant advancements, current self‐healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self‐healable and conductive copolymer, poly(ionic liquid‐co‐acrylic acid) (PIL‐co‐PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion‐dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self‐healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL‐co‐PAA/TPU films showcase alkaline‐responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL‐co‐PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self‐healing properties of commercial cotton fabrics coated with the self‐healable PIL‐co‐PAA are also investigated, demonstrating both self‐healing and electrical properties. This study advances the understanding of self‐healable conductive polymers and opens new avenues for their application in wearable technology. The research introduces a self‐healable and conductive copolymer, poly(ionic liquid‐co‐acrylic acid) (PIL‐co‐PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion‐dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self‐healing abilities and demonstrates enhanced mechanical properties and electrical conductivity.</description><subject>Acrylic acid</subject><subject>Chemical bonds</subject><subject>Conducting polymers</subject><subject>conductive</subject><subject>Copolymers</subject><subject>Cotton</subject><subject>Dipole interactions</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Free radical polymerization</subject><subject>Free radicals</subject><subject>Healing</subject><subject>Hydrogen bonds</subject><subject>Ionic liquids</subject><subject>Mechanical properties</subject><subject>pH‐responsive</subject><subject>poly(acrylic acid)</subject><subject>poly(ionic liquid)</subject><subject>Polyurethane resins</subject><subject>self‐healing</subject><subject>stretchable</subject><subject>Tensile tests</subject><subject>Textile composites</subject><subject>Thermogravimetric analysis</subject><subject>Ultimate tensile strength</subject><subject>Urethane thermoplastic elastomers</subject><subject>Wearable technology</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkU1v1DAQhi1ERT_gyhFF4tJDd_HH2omP1arQSluB6CKOluNMVBcnDnZCtTfOnPiN_SWd1ZZF4oJkya_Gj1_NzEvIa0bnjFL-LnchzDnlCzwlf0aOmGJipiqun-81o4fkOOc7SgVD6gU5FFXFRLmQR-TXefhmg-_h4efvz5CH2Gf_A86KGwgtli7BBlsHLNi-KZaxbyY3IoByiGHTQULVDTH7EXJx78fb4qK_tb2DprgGh8o7G4pPKQ6QRo_M2voQEz63MRVfwaatfbFG9iU5aG3I8OrpPiFf3l-sl5ez1ccPV8vz1cxxXfGZ0JRzgROUQAW1jRRclUxWsmG2prK1ZV3XuhUKZa2cZEKpptUghQTXlFqckNOd75Di9wnyaDqfHYRge4hTNoIqLrnWnCH69h_0Lk6px-6MYLhLtVCUIzXfUS7FnBO0Zki-s2ljGDXblMw2JbNPCT-8ebKd6g6aPf4nFgT0Drj3ATb_sTM316vVX_NHKBShRQ</recordid><startdate>20240530</startdate><enddate>20240530</enddate><creator>Chang, Chia‐Wei</creator><creator>Wu, Chia‐Ti</creator><creator>Lo, Tse‐Yu</creator><creator>Chen, Yu</creator><creator>Chang, Chun‐Ting</creator><creator>Chen, Huan‐Ru</creator><creator>Chang, Chun‐Chi</creator><creator>Lee, Lin‐Ruei</creator><creator>Tseng, Yu‐Hsuan</creator><creator>Chen, Jiun‐Tai</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0662-782X</orcidid></search><sort><creationdate>20240530</creationdate><title>Alkaline‐Responsive, Self‐Healable, and Conductive Copolymer Composites with Enhanced Mechanical Properties Tailored for Wearable Tech</title><author>Chang, Chia‐Wei ; Wu, Chia‐Ti ; Lo, Tse‐Yu ; Chen, Yu ; Chang, Chun‐Ting ; Chen, Huan‐Ru ; Chang, Chun‐Chi ; Lee, Lin‐Ruei ; Tseng, Yu‐Hsuan ; Chen, Jiun‐Tai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2982-3902233887e030ad532671585d1ab05fa7bbb9f365fab6c51366df9e535ecd793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylic acid</topic><topic>Chemical bonds</topic><topic>Conducting polymers</topic><topic>conductive</topic><topic>Copolymers</topic><topic>Cotton</topic><topic>Dipole interactions</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Free radical polymerization</topic><topic>Free radicals</topic><topic>Healing</topic><topic>Hydrogen bonds</topic><topic>Ionic liquids</topic><topic>Mechanical properties</topic><topic>pH‐responsive</topic><topic>poly(acrylic acid)</topic><topic>poly(ionic liquid)</topic><topic>Polyurethane resins</topic><topic>self‐healing</topic><topic>stretchable</topic><topic>Tensile tests</topic><topic>Textile composites</topic><topic>Thermogravimetric analysis</topic><topic>Ultimate tensile strength</topic><topic>Urethane thermoplastic elastomers</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Chia‐Wei</creatorcontrib><creatorcontrib>Wu, Chia‐Ti</creatorcontrib><creatorcontrib>Lo, Tse‐Yu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Chang, Chun‐Ting</creatorcontrib><creatorcontrib>Chen, Huan‐Ru</creatorcontrib><creatorcontrib>Chang, Chun‐Chi</creatorcontrib><creatorcontrib>Lee, Lin‐Ruei</creatorcontrib><creatorcontrib>Tseng, Yu‐Hsuan</creatorcontrib><creatorcontrib>Chen, Jiun‐Tai</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Chia‐Wei</au><au>Wu, Chia‐Ti</au><au>Lo, Tse‐Yu</au><au>Chen, Yu</au><au>Chang, Chun‐Ting</au><au>Chen, Huan‐Ru</au><au>Chang, Chun‐Chi</au><au>Lee, Lin‐Ruei</au><au>Tseng, Yu‐Hsuan</au><au>Chen, Jiun‐Tai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkaline‐Responsive, Self‐Healable, and Conductive Copolymer Composites with Enhanced Mechanical Properties Tailored for Wearable Tech</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-05-30</date><risdate>2024</risdate><volume>20</volume><issue>40</issue><spage>e2402472</spage><epage>n/a</epage><pages>e2402472-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Despite significant advancements, current self‐healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self‐healable and conductive copolymer, poly(ionic liquid‐co‐acrylic acid) (PIL‐co‐PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion‐dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self‐healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL‐co‐PAA/TPU films showcase alkaline‐responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL‐co‐PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self‐healing properties of commercial cotton fabrics coated with the self‐healable PIL‐co‐PAA are also investigated, demonstrating both self‐healing and electrical properties. This study advances the understanding of self‐healable conductive polymers and opens new avenues for their application in wearable technology. The research introduces a self‐healable and conductive copolymer, poly(ionic liquid‐co‐acrylic acid) (PIL‐co‐PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion‐dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self‐healing abilities and demonstrates enhanced mechanical properties and electrical conductivity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38813745</pmid><doi>10.1002/smll.202402472</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0662-782X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-05, Vol.20 (40), p.e2402472-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3062529921
source Wiley Online Library Journals Frontfile Complete
subjects Acrylic acid
Chemical bonds
Conducting polymers
conductive
Copolymers
Cotton
Dipole interactions
Electrical properties
Electrical resistivity
Free radical polymerization
Free radicals
Healing
Hydrogen bonds
Ionic liquids
Mechanical properties
pH‐responsive
poly(acrylic acid)
poly(ionic liquid)
Polyurethane resins
self‐healing
stretchable
Tensile tests
Textile composites
Thermogravimetric analysis
Ultimate tensile strength
Urethane thermoplastic elastomers
Wearable technology
title Alkaline‐Responsive, Self‐Healable, and Conductive Copolymer Composites with Enhanced Mechanical Properties Tailored for Wearable Tech
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkaline%E2%80%90Responsive,%20Self%E2%80%90Healable,%20and%20Conductive%20Copolymer%20Composites%20with%20Enhanced%20Mechanical%20Properties%20Tailored%20for%20Wearable%20Tech&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Chang,%20Chia%E2%80%90Wei&rft.date=2024-05-30&rft.volume=20&rft.issue=40&rft.spage=e2402472&rft.epage=n/a&rft.pages=e2402472-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202402472&rft_dat=%3Cproquest_cross%3E3112464602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112464602&rft_id=info:pmid/38813745&rfr_iscdi=true