Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp
Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea , and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates ( Trichoderma atroviride T1 an...
Gespeichert in:
Veröffentlicht in: | Biotechnology letters 2024-10, Vol.46 (5), p.751-766 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 766 |
---|---|
container_issue | 5 |
container_start_page | 751 |
container_title | Biotechnology letters |
container_volume | 46 |
creator | Fan, Q. S. Lin, H. J. Hu, Y. J. Jin, J. Yan, H. H. Zhang, R. Q. |
description | Objectives To screen high active volatile organic compounds (VOCs)-producing
Trichoderma
isolates against strawberry gray mold caused by
Botrytis cinerea
, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine
Trichoderma
isolates (
Trichoderma atroviride
T1 and T3;
Trichoderma harzianum
T2, T4 and T5; T6, T7, T8 and T9 identified as
Trichoderma asperellum
in this work) significantly inhibited the mycelial growth (13.9−63.0% reduction) and conidial germination (17.6−96.3% reduction) of
B
.
cinerea
, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of
B
.
cinerea
, completely protected the leaves from
B
.
cinerea
infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of
B
.
cinerea
, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC–MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by
Trichoderma
spp.
T
.
asperellum
T7 showed high biofumigant activity against mycelial growth especially conidial germination of
B
.
cinerea
and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen’s plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold. |
doi_str_mv | 10.1007/s10529-024-03498-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3062527756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107312936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-bffa85bf6a1c9ecad301b0780312131185f9a7a02f99116c231d84ae585cd42b3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvLF-CALHHhYjpjx3F8pBX_pEq9lLPlOPZuqiRebEco3x63W0DiwGkO83vvjeYR8gbhAwKoy4wguWbAGwai0R3Tz8gOpRKsVap9TnaADTLZaH5GXuV8DwBagXpJzkTXITYt7MjhaowuLiXFicZAc0n2Z-9T2uhVLGkrY6b7ZDc6x2mgdhnosZJx2dNy8DSkdSw0H_wU2DQGT_uNhnUe93Yp9C6N7hAHn2ZL8_F4QV4EO2X_-mmek--fP91df2U3t1--XX-8YY7LtrA-BNvJPrQWnfbODgKwB9WBQI4CsZNBW2WBB60RW8cFDl1jveykGxrei3Py_uRbD_2x-lzMPGbnp8kuPq7ZCGi55ErJtqLv_kHv45qWep0RCKomavFA8RPlUsw5-WCOaZxt2gyCeejBnHowtQfz2IPRVfT2yXrtZz_8kfx-fAXECch1tex9-pv9H9tfriuTiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107312936</pqid></control><display><type>article</type><title>Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fan, Q. S. ; Lin, H. J. ; Hu, Y. J. ; Jin, J. ; Yan, H. H. ; Zhang, R. Q.</creator><creatorcontrib>Fan, Q. S. ; Lin, H. J. ; Hu, Y. J. ; Jin, J. ; Yan, H. H. ; Zhang, R. Q.</creatorcontrib><description>Objectives To screen high active volatile organic compounds (VOCs)-producing
Trichoderma
isolates against strawberry gray mold caused by
Botrytis cinerea
, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine
Trichoderma
isolates (
Trichoderma atroviride
T1 and T3;
Trichoderma harzianum
T2, T4 and T5; T6, T7, T8 and T9 identified as
Trichoderma asperellum
in this work) significantly inhibited the mycelial growth (13.9−63.0% reduction) and conidial germination (17.6−96.3% reduction) of
B
.
cinerea
, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of
B
.
cinerea
, completely protected the leaves from
B
.
cinerea
infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of
B
.
cinerea
, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC–MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by
Trichoderma
spp.
T
.
asperellum
T7 showed high biofumigant activity against mycelial growth especially conidial germination of
B
.
cinerea
and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen’s plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.</description><identifier>ISSN: 0141-5492</identifier><identifier>ISSN: 1573-6776</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-024-03498-9</identifier><identifier>PMID: 38811460</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alcohols ; Alkenes ; Applied Microbiology ; Biochemistry ; Biological control ; Biological Control Agents - pharmacology ; Biomedical and Life Sciences ; Biotechnology ; Botrytis - drug effects ; Botrytis - growth & development ; Cell membranes ; Cytoplasm ; Esters ; Food Storage - methods ; Fragaria - microbiology ; Fruit - microbiology ; Fruits ; Fungi ; Gas chromatography ; Gas Chromatography-Mass Spectrometry ; Germination ; Grey mold ; Life Sciences ; Mass spectrometry ; Mass spectroscopy ; Membrane permeability ; Metabolites ; Microbiology ; Mode of action ; Molds ; Mycelia ; Mycelium - drug effects ; Mycelium - growth & development ; Organic compounds ; Original Research Paper ; Pathogens ; Plant Diseases - microbiology ; Plant Diseases - prevention & control ; Shelf life ; Spores, Fungal - drug effects ; Spores, Fungal - growth & development ; Strawberries ; Trichoderma ; Trichoderma - physiology ; VOCs ; Volatile organic compounds ; Volatile Organic Compounds - analysis ; Volatile Organic Compounds - chemistry ; Volatile Organic Compounds - metabolism ; Volatile Organic Compounds - pharmacology</subject><ispartof>Biotechnology letters, 2024-10, Vol.46 (5), p.751-766</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-bffa85bf6a1c9ecad301b0780312131185f9a7a02f99116c231d84ae585cd42b3</cites><orcidid>0000-0002-4246-4642 ; 0000-0001-8565-9039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-024-03498-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-024-03498-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38811460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Q. S.</creatorcontrib><creatorcontrib>Lin, H. J.</creatorcontrib><creatorcontrib>Hu, Y. J.</creatorcontrib><creatorcontrib>Jin, J.</creatorcontrib><creatorcontrib>Yan, H. H.</creatorcontrib><creatorcontrib>Zhang, R. Q.</creatorcontrib><title>Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Objectives To screen high active volatile organic compounds (VOCs)-producing
Trichoderma
isolates against strawberry gray mold caused by
Botrytis cinerea
, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine
Trichoderma
isolates (
Trichoderma atroviride
T1 and T3;
Trichoderma harzianum
T2, T4 and T5; T6, T7, T8 and T9 identified as
Trichoderma asperellum
in this work) significantly inhibited the mycelial growth (13.9−63.0% reduction) and conidial germination (17.6−96.3% reduction) of
B
.
cinerea
, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of
B
.
cinerea
, completely protected the leaves from
B
.
cinerea
infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of
B
.
cinerea
, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC–MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by
Trichoderma
spp.
T
.
asperellum
T7 showed high biofumigant activity against mycelial growth especially conidial germination of
B
.
cinerea
and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen’s plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.</description><subject>Alcohols</subject><subject>Alkenes</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biological control</subject><subject>Biological Control Agents - pharmacology</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Botrytis - drug effects</subject><subject>Botrytis - growth & development</subject><subject>Cell membranes</subject><subject>Cytoplasm</subject><subject>Esters</subject><subject>Food Storage - methods</subject><subject>Fragaria - microbiology</subject><subject>Fruit - microbiology</subject><subject>Fruits</subject><subject>Fungi</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Germination</subject><subject>Grey mold</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane permeability</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Mode of action</subject><subject>Molds</subject><subject>Mycelia</subject><subject>Mycelium - drug effects</subject><subject>Mycelium - growth & development</subject><subject>Organic compounds</subject><subject>Original Research Paper</subject><subject>Pathogens</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Diseases - prevention & control</subject><subject>Shelf life</subject><subject>Spores, Fungal - drug effects</subject><subject>Spores, Fungal - growth & development</subject><subject>Strawberries</subject><subject>Trichoderma</subject><subject>Trichoderma - physiology</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatile Organic Compounds - analysis</subject><subject>Volatile Organic Compounds - chemistry</subject><subject>Volatile Organic Compounds - metabolism</subject><subject>Volatile Organic Compounds - pharmacology</subject><issn>0141-5492</issn><issn>1573-6776</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvLF-CALHHhYjpjx3F8pBX_pEq9lLPlOPZuqiRebEco3x63W0DiwGkO83vvjeYR8gbhAwKoy4wguWbAGwai0R3Tz8gOpRKsVap9TnaADTLZaH5GXuV8DwBagXpJzkTXITYt7MjhaowuLiXFicZAc0n2Z-9T2uhVLGkrY6b7ZDc6x2mgdhnosZJx2dNy8DSkdSw0H_wU2DQGT_uNhnUe93Yp9C6N7hAHn2ZL8_F4QV4EO2X_-mmek--fP91df2U3t1--XX-8YY7LtrA-BNvJPrQWnfbODgKwB9WBQI4CsZNBW2WBB60RW8cFDl1jveykGxrei3Py_uRbD_2x-lzMPGbnp8kuPq7ZCGi55ErJtqLv_kHv45qWep0RCKomavFA8RPlUsw5-WCOaZxt2gyCeejBnHowtQfz2IPRVfT2yXrtZz_8kfx-fAXECch1tex9-pv9H9tfriuTiw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Fan, Q. S.</creator><creator>Lin, H. J.</creator><creator>Hu, Y. J.</creator><creator>Jin, J.</creator><creator>Yan, H. H.</creator><creator>Zhang, R. Q.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>L7M</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4246-4642</orcidid><orcidid>https://orcid.org/0000-0001-8565-9039</orcidid></search><sort><creationdate>20241001</creationdate><title>Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp</title><author>Fan, Q. S. ; Lin, H. J. ; Hu, Y. J. ; Jin, J. ; Yan, H. H. ; Zhang, R. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-bffa85bf6a1c9ecad301b0780312131185f9a7a02f99116c231d84ae585cd42b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcohols</topic><topic>Alkenes</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biological control</topic><topic>Biological Control Agents - pharmacology</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Botrytis - drug effects</topic><topic>Botrytis - growth & development</topic><topic>Cell membranes</topic><topic>Cytoplasm</topic><topic>Esters</topic><topic>Food Storage - methods</topic><topic>Fragaria - microbiology</topic><topic>Fruit - microbiology</topic><topic>Fruits</topic><topic>Fungi</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Germination</topic><topic>Grey mold</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane permeability</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Mode of action</topic><topic>Molds</topic><topic>Mycelia</topic><topic>Mycelium - drug effects</topic><topic>Mycelium - growth & development</topic><topic>Organic compounds</topic><topic>Original Research Paper</topic><topic>Pathogens</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Diseases - prevention & control</topic><topic>Shelf life</topic><topic>Spores, Fungal - drug effects</topic><topic>Spores, Fungal - growth & development</topic><topic>Strawberries</topic><topic>Trichoderma</topic><topic>Trichoderma - physiology</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatile Organic Compounds - analysis</topic><topic>Volatile Organic Compounds - chemistry</topic><topic>Volatile Organic Compounds - metabolism</topic><topic>Volatile Organic Compounds - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Q. S.</creatorcontrib><creatorcontrib>Lin, H. J.</creatorcontrib><creatorcontrib>Hu, Y. J.</creatorcontrib><creatorcontrib>Jin, J.</creatorcontrib><creatorcontrib>Yan, H. H.</creatorcontrib><creatorcontrib>Zhang, R. Q.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Q. S.</au><au>Lin, H. J.</au><au>Hu, Y. J.</au><au>Jin, J.</au><au>Yan, H. H.</au><au>Zhang, R. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>46</volume><issue>5</issue><spage>751</spage><epage>766</epage><pages>751-766</pages><issn>0141-5492</issn><issn>1573-6776</issn><eissn>1573-6776</eissn><abstract>Objectives To screen high active volatile organic compounds (VOCs)-producing
Trichoderma
isolates against strawberry gray mold caused by
Botrytis cinerea
, and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine
Trichoderma
isolates (
Trichoderma atroviride
T1 and T3;
Trichoderma harzianum
T2, T4 and T5; T6, T7, T8 and T9 identified as
Trichoderma asperellum
in this work) significantly inhibited the mycelial growth (13.9−63.0% reduction) and conidial germination (17.6−96.3% reduction) of
B
.
cinerea
, the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of
B
.
cinerea
, completely protected the leaves from
B
.
cinerea
infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of
B
.
cinerea
, thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC–MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by
Trichoderma
spp.
T
.
asperellum
T7 showed high biofumigant activity against mycelial growth especially conidial germination of
B
.
cinerea
and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen’s plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38811460</pmid><doi>10.1007/s10529-024-03498-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4246-4642</orcidid><orcidid>https://orcid.org/0000-0001-8565-9039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-5492 |
ispartof | Biotechnology letters, 2024-10, Vol.46 (5), p.751-766 |
issn | 0141-5492 1573-6776 1573-6776 |
language | eng |
recordid | cdi_proquest_miscellaneous_3062527756 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Alcohols Alkenes Applied Microbiology Biochemistry Biological control Biological Control Agents - pharmacology Biomedical and Life Sciences Biotechnology Botrytis - drug effects Botrytis - growth & development Cell membranes Cytoplasm Esters Food Storage - methods Fragaria - microbiology Fruit - microbiology Fruits Fungi Gas chromatography Gas Chromatography-Mass Spectrometry Germination Grey mold Life Sciences Mass spectrometry Mass spectroscopy Membrane permeability Metabolites Microbiology Mode of action Molds Mycelia Mycelium - drug effects Mycelium - growth & development Organic compounds Original Research Paper Pathogens Plant Diseases - microbiology Plant Diseases - prevention & control Shelf life Spores, Fungal - drug effects Spores, Fungal - growth & development Strawberries Trichoderma Trichoderma - physiology VOCs Volatile organic compounds Volatile Organic Compounds - analysis Volatile Organic Compounds - chemistry Volatile Organic Compounds - metabolism Volatile Organic Compounds - pharmacology |
title | Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocontrol%20of%20strawberry%20Botrytis%20gray%20mold%20and%20prolong%20the%20fruit%20shelf-life%20by%20fumigant%20Trichoderma%20spp&rft.jtitle=Biotechnology%20letters&rft.au=Fan,%20Q.%20S.&rft.date=2024-10-01&rft.volume=46&rft.issue=5&rft.spage=751&rft.epage=766&rft.pages=751-766&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-024-03498-9&rft_dat=%3Cproquest_cross%3E3107312936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107312936&rft_id=info:pmid/38811460&rfr_iscdi=true |