Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp

Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea , and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates ( Trichoderma atroviride T1 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology letters 2024-10, Vol.46 (5), p.751-766
Hauptverfasser: Fan, Q. S., Lin, H. J., Hu, Y. J., Jin, J., Yan, H. H., Zhang, R. Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 5
container_start_page 751
container_title Biotechnology letters
container_volume 46
creator Fan, Q. S.
Lin, H. J.
Hu, Y. J.
Jin, J.
Yan, H. H.
Zhang, R. Q.
description Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea , and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates ( Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9−63.0% reduction) and conidial germination (17.6−96.3% reduction) of B . cinerea , the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B . cinerea , completely protected the leaves from B . cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B . cinerea , thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC–MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T . asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B . cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen’s plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.
doi_str_mv 10.1007/s10529-024-03498-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3062527756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3107312936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-bffa85bf6a1c9ecad301b0780312131185f9a7a02f99116c231d84ae585cd42b3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvLF-CALHHhYjpjx3F8pBX_pEq9lLPlOPZuqiRebEco3x63W0DiwGkO83vvjeYR8gbhAwKoy4wguWbAGwai0R3Tz8gOpRKsVap9TnaADTLZaH5GXuV8DwBagXpJzkTXITYt7MjhaowuLiXFicZAc0n2Z-9T2uhVLGkrY6b7ZDc6x2mgdhnosZJx2dNy8DSkdSw0H_wU2DQGT_uNhnUe93Yp9C6N7hAHn2ZL8_F4QV4EO2X_-mmek--fP91df2U3t1--XX-8YY7LtrA-BNvJPrQWnfbODgKwB9WBQI4CsZNBW2WBB60RW8cFDl1jveykGxrei3Py_uRbD_2x-lzMPGbnp8kuPq7ZCGi55ErJtqLv_kHv45qWep0RCKomavFA8RPlUsw5-WCOaZxt2gyCeejBnHowtQfz2IPRVfT2yXrtZz_8kfx-fAXECch1tex9-pv9H9tfriuTiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107312936</pqid></control><display><type>article</type><title>Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fan, Q. S. ; Lin, H. J. ; Hu, Y. J. ; Jin, J. ; Yan, H. H. ; Zhang, R. Q.</creator><creatorcontrib>Fan, Q. S. ; Lin, H. J. ; Hu, Y. J. ; Jin, J. ; Yan, H. H. ; Zhang, R. Q.</creatorcontrib><description>Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea , and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates ( Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9−63.0% reduction) and conidial germination (17.6−96.3% reduction) of B . cinerea , the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B . cinerea , completely protected the leaves from B . cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B . cinerea , thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC–MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T . asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B . cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen’s plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.</description><identifier>ISSN: 0141-5492</identifier><identifier>ISSN: 1573-6776</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-024-03498-9</identifier><identifier>PMID: 38811460</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alcohols ; Alkenes ; Applied Microbiology ; Biochemistry ; Biological control ; Biological Control Agents - pharmacology ; Biomedical and Life Sciences ; Biotechnology ; Botrytis - drug effects ; Botrytis - growth &amp; development ; Cell membranes ; Cytoplasm ; Esters ; Food Storage - methods ; Fragaria - microbiology ; Fruit - microbiology ; Fruits ; Fungi ; Gas chromatography ; Gas Chromatography-Mass Spectrometry ; Germination ; Grey mold ; Life Sciences ; Mass spectrometry ; Mass spectroscopy ; Membrane permeability ; Metabolites ; Microbiology ; Mode of action ; Molds ; Mycelia ; Mycelium - drug effects ; Mycelium - growth &amp; development ; Organic compounds ; Original Research Paper ; Pathogens ; Plant Diseases - microbiology ; Plant Diseases - prevention &amp; control ; Shelf life ; Spores, Fungal - drug effects ; Spores, Fungal - growth &amp; development ; Strawberries ; Trichoderma ; Trichoderma - physiology ; VOCs ; Volatile organic compounds ; Volatile Organic Compounds - analysis ; Volatile Organic Compounds - chemistry ; Volatile Organic Compounds - metabolism ; Volatile Organic Compounds - pharmacology</subject><ispartof>Biotechnology letters, 2024-10, Vol.46 (5), p.751-766</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-bffa85bf6a1c9ecad301b0780312131185f9a7a02f99116c231d84ae585cd42b3</cites><orcidid>0000-0002-4246-4642 ; 0000-0001-8565-9039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-024-03498-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-024-03498-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38811460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Q. S.</creatorcontrib><creatorcontrib>Lin, H. J.</creatorcontrib><creatorcontrib>Hu, Y. J.</creatorcontrib><creatorcontrib>Jin, J.</creatorcontrib><creatorcontrib>Yan, H. H.</creatorcontrib><creatorcontrib>Zhang, R. Q.</creatorcontrib><title>Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea , and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates ( Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9−63.0% reduction) and conidial germination (17.6−96.3% reduction) of B . cinerea , the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B . cinerea , completely protected the leaves from B . cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B . cinerea , thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC–MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T . asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B . cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen’s plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.</description><subject>Alcohols</subject><subject>Alkenes</subject><subject>Applied Microbiology</subject><subject>Biochemistry</subject><subject>Biological control</subject><subject>Biological Control Agents - pharmacology</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Botrytis - drug effects</subject><subject>Botrytis - growth &amp; development</subject><subject>Cell membranes</subject><subject>Cytoplasm</subject><subject>Esters</subject><subject>Food Storage - methods</subject><subject>Fragaria - microbiology</subject><subject>Fruit - microbiology</subject><subject>Fruits</subject><subject>Fungi</subject><subject>Gas chromatography</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>Germination</subject><subject>Grey mold</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Membrane permeability</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Mode of action</subject><subject>Molds</subject><subject>Mycelia</subject><subject>Mycelium - drug effects</subject><subject>Mycelium - growth &amp; development</subject><subject>Organic compounds</subject><subject>Original Research Paper</subject><subject>Pathogens</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Diseases - prevention &amp; control</subject><subject>Shelf life</subject><subject>Spores, Fungal - drug effects</subject><subject>Spores, Fungal - growth &amp; development</subject><subject>Strawberries</subject><subject>Trichoderma</subject><subject>Trichoderma - physiology</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatile Organic Compounds - analysis</subject><subject>Volatile Organic Compounds - chemistry</subject><subject>Volatile Organic Compounds - metabolism</subject><subject>Volatile Organic Compounds - pharmacology</subject><issn>0141-5492</issn><issn>1573-6776</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvLF-CALHHhYjpjx3F8pBX_pEq9lLPlOPZuqiRebEco3x63W0DiwGkO83vvjeYR8gbhAwKoy4wguWbAGwai0R3Tz8gOpRKsVap9TnaADTLZaH5GXuV8DwBagXpJzkTXITYt7MjhaowuLiXFicZAc0n2Z-9T2uhVLGkrY6b7ZDc6x2mgdhnosZJx2dNy8DSkdSw0H_wU2DQGT_uNhnUe93Yp9C6N7hAHn2ZL8_F4QV4EO2X_-mmek--fP91df2U3t1--XX-8YY7LtrA-BNvJPrQWnfbODgKwB9WBQI4CsZNBW2WBB60RW8cFDl1jveykGxrei3Py_uRbD_2x-lzMPGbnp8kuPq7ZCGi55ErJtqLv_kHv45qWep0RCKomavFA8RPlUsw5-WCOaZxt2gyCeejBnHowtQfz2IPRVfT2yXrtZz_8kfx-fAXECch1tex9-pv9H9tfriuTiw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Fan, Q. S.</creator><creator>Lin, H. J.</creator><creator>Hu, Y. J.</creator><creator>Jin, J.</creator><creator>Yan, H. H.</creator><creator>Zhang, R. Q.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>L7M</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4246-4642</orcidid><orcidid>https://orcid.org/0000-0001-8565-9039</orcidid></search><sort><creationdate>20241001</creationdate><title>Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp</title><author>Fan, Q. S. ; Lin, H. J. ; Hu, Y. J. ; Jin, J. ; Yan, H. H. ; Zhang, R. Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-bffa85bf6a1c9ecad301b0780312131185f9a7a02f99116c231d84ae585cd42b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alcohols</topic><topic>Alkenes</topic><topic>Applied Microbiology</topic><topic>Biochemistry</topic><topic>Biological control</topic><topic>Biological Control Agents - pharmacology</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Botrytis - drug effects</topic><topic>Botrytis - growth &amp; development</topic><topic>Cell membranes</topic><topic>Cytoplasm</topic><topic>Esters</topic><topic>Food Storage - methods</topic><topic>Fragaria - microbiology</topic><topic>Fruit - microbiology</topic><topic>Fruits</topic><topic>Fungi</topic><topic>Gas chromatography</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>Germination</topic><topic>Grey mold</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Membrane permeability</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Mode of action</topic><topic>Molds</topic><topic>Mycelia</topic><topic>Mycelium - drug effects</topic><topic>Mycelium - growth &amp; development</topic><topic>Organic compounds</topic><topic>Original Research Paper</topic><topic>Pathogens</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Diseases - prevention &amp; control</topic><topic>Shelf life</topic><topic>Spores, Fungal - drug effects</topic><topic>Spores, Fungal - growth &amp; development</topic><topic>Strawberries</topic><topic>Trichoderma</topic><topic>Trichoderma - physiology</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatile Organic Compounds - analysis</topic><topic>Volatile Organic Compounds - chemistry</topic><topic>Volatile Organic Compounds - metabolism</topic><topic>Volatile Organic Compounds - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Q. S.</creatorcontrib><creatorcontrib>Lin, H. J.</creatorcontrib><creatorcontrib>Hu, Y. J.</creatorcontrib><creatorcontrib>Jin, J.</creatorcontrib><creatorcontrib>Yan, H. H.</creatorcontrib><creatorcontrib>Zhang, R. Q.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Q. S.</au><au>Lin, H. J.</au><au>Hu, Y. J.</au><au>Jin, J.</au><au>Yan, H. H.</au><au>Zhang, R. Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>46</volume><issue>5</issue><spage>751</spage><epage>766</epage><pages>751-766</pages><issn>0141-5492</issn><issn>1573-6776</issn><eissn>1573-6776</eissn><abstract>Objectives To screen high active volatile organic compounds (VOCs)-producing Trichoderma isolates against strawberry gray mold caused by Botrytis cinerea , and to explore their antagonistic mode of action against the pathogen. VOCs produced by nine Trichoderma isolates ( Trichoderma atroviride T1 and T3; Trichoderma harzianum T2, T4 and T5; T6, T7, T8 and T9 identified as Trichoderma asperellum in this work) significantly inhibited the mycelial growth (13.9−63.0% reduction) and conidial germination (17.6−96.3% reduction) of B . cinerea , the highest inhibition percentage belonged to VOCs of T7; in a closed space, VOCs of T7 shared 76.9% and 100% biocontrol efficacy against gray mold on strawberry fruits and detached leaves, respectively, prolonged the fruit shelf-life by 3 days in presence of B . cinerea , completely protected the leaves from B . cinerea infecting; volatile metabolites of T7 damaged the cell membrane permeability and integrity of B . cinerea , thereby inhibiting the mycelial growth and conidial germination. Gas chromatography-mass spectrometry (GC–MS) analysis revealed the VOCs contain 23 potential compounds, and the majority of these compounds were categorised as alkenes, alcohols, and esters, including PEA and 6PP, which have been reported as substances produced by Trichoderma spp. T . asperellum T7 showed high biofumigant activity against mycelial growth especially conidial germination of B . cinerea and thus protected strawberry fruits and leaves from gray mold, which acted by damaging the pathogen’s plasma membrane and resulting in cytoplasm leakage, was a potential biofumigant for controlling pre- and post-harvest strawberry gray mold.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38811460</pmid><doi>10.1007/s10529-024-03498-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4246-4642</orcidid><orcidid>https://orcid.org/0000-0001-8565-9039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0141-5492
ispartof Biotechnology letters, 2024-10, Vol.46 (5), p.751-766
issn 0141-5492
1573-6776
1573-6776
language eng
recordid cdi_proquest_miscellaneous_3062527756
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Alcohols
Alkenes
Applied Microbiology
Biochemistry
Biological control
Biological Control Agents - pharmacology
Biomedical and Life Sciences
Biotechnology
Botrytis - drug effects
Botrytis - growth & development
Cell membranes
Cytoplasm
Esters
Food Storage - methods
Fragaria - microbiology
Fruit - microbiology
Fruits
Fungi
Gas chromatography
Gas Chromatography-Mass Spectrometry
Germination
Grey mold
Life Sciences
Mass spectrometry
Mass spectroscopy
Membrane permeability
Metabolites
Microbiology
Mode of action
Molds
Mycelia
Mycelium - drug effects
Mycelium - growth & development
Organic compounds
Original Research Paper
Pathogens
Plant Diseases - microbiology
Plant Diseases - prevention & control
Shelf life
Spores, Fungal - drug effects
Spores, Fungal - growth & development
Strawberries
Trichoderma
Trichoderma - physiology
VOCs
Volatile organic compounds
Volatile Organic Compounds - analysis
Volatile Organic Compounds - chemistry
Volatile Organic Compounds - metabolism
Volatile Organic Compounds - pharmacology
title Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A26%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocontrol%20of%20strawberry%20Botrytis%20gray%20mold%20and%20prolong%20the%20fruit%20shelf-life%20by%20fumigant%20Trichoderma%20spp&rft.jtitle=Biotechnology%20letters&rft.au=Fan,%20Q.%20S.&rft.date=2024-10-01&rft.volume=46&rft.issue=5&rft.spage=751&rft.epage=766&rft.pages=751-766&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-024-03498-9&rft_dat=%3Cproquest_cross%3E3107312936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107312936&rft_id=info:pmid/38811460&rfr_iscdi=true