Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data

Purpose Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuro-oncology 2024-07, Vol.168 (3), p.515-524
Hauptverfasser: Shetty, Arya, Wang, Su, Khan, A. Basit, English, Collin W., Nouri, Shervin Hosseingholi, Magill, Stephen T., Raleigh, David R., Klisch, Tiemo J., Harmanci, Arif O., Patel, Akash J., Harmanci, Akdes Serin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 3
container_start_page 515
container_title Journal of neuro-oncology
container_volume 168
creator Shetty, Arya
Wang, Su
Khan, A. Basit
English, Collin W.
Nouri, Shervin Hosseingholi
Magill, Stephen T.
Raleigh, David R.
Klisch, Tiemo J.
Harmanci, Arif O.
Patel, Akash J.
Harmanci, Akdes Serin
description Purpose Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies. Methods Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk ( n  = 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model. Results While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on n  = 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data ( n  = 711 samples). Conclusion Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.
doi_str_mv 10.1007/s11060-024-04710-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3062527639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062527639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-b2c4f4aa75cfef98cbe863fbfe43ec186df39955e49b8368679b33b465d30413</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvLH-CALHHhYmpn_BEfq6pQpBWVUA-9WbYzXrJkk8VOKpVfj5ctH-LAxSPZz7zveF5CXgn-TnBuzosQXHPGG8m4NIIz_YSshDLADBh4SlZcaMOUlXcn5EUpW84rBuI5OYG2FUI1sCLbNd5j9pt-3NBSjwFZxGGgBb8tOMbD9TzROPhS-vRA_djR-MVnH2fM_Xek87KbMi1L2ORp2RfajzQsw1f6-dMF-0uj87M_I8-SHwq-fKyn5Pb91e3lNVvffPh4ebFmsVF6ZqGJMknvjYoJk21jwFZDCgklYBSt7hJYqxRKG1rQrTY2AASpVQdcCjglb4-y-zxV_zK7XV8Of_IjTktxwHWjGqPBVvTNP-h2WvJYhztQVitjBVSqOVIxT6VkTG6f-53PD05wdwjCHYNwNQj3Mwina9PrR-kl7LD73fJr8xWAI1Dq07jB_Mf7P7I_AAkilFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069657913</pqid></control><display><type>article</type><title>Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shetty, Arya ; Wang, Su ; Khan, A. Basit ; English, Collin W. ; Nouri, Shervin Hosseingholi ; Magill, Stephen T. ; Raleigh, David R. ; Klisch, Tiemo J. ; Harmanci, Arif O. ; Patel, Akash J. ; Harmanci, Akdes Serin</creator><creatorcontrib>Shetty, Arya ; Wang, Su ; Khan, A. Basit ; English, Collin W. ; Nouri, Shervin Hosseingholi ; Magill, Stephen T. ; Raleigh, David R. ; Klisch, Tiemo J. ; Harmanci, Arif O. ; Patel, Akash J. ; Harmanci, Akdes Serin</creatorcontrib><description>Purpose Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies. Methods Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk ( n  = 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model. Results While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on n  = 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data ( n  = 711 samples). Conclusion Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.</description><identifier>ISSN: 0167-594X</identifier><identifier>ISSN: 1573-7373</identifier><identifier>EISSN: 1573-7373</identifier><identifier>DOI: 10.1007/s11060-024-04710-6</identifier><identifier>PMID: 38811523</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Brain cancer ; Cancer ; Cell culture ; Copy number ; Glioma ; Glioma cells ; Medicine ; Medicine &amp; Public Health ; Meningioma ; Neurology ; Next-generation sequencing ; Oncology ; Precision medicine ; Transcriptomics</subject><ispartof>Journal of neuro-oncology, 2024-07, Vol.168 (3), p.515-524</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. corrected publication 2024</rights><rights>2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. corrected publication 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-b2c4f4aa75cfef98cbe863fbfe43ec186df39955e49b8368679b33b465d30413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11060-024-04710-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11060-024-04710-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38811523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shetty, Arya</creatorcontrib><creatorcontrib>Wang, Su</creatorcontrib><creatorcontrib>Khan, A. Basit</creatorcontrib><creatorcontrib>English, Collin W.</creatorcontrib><creatorcontrib>Nouri, Shervin Hosseingholi</creatorcontrib><creatorcontrib>Magill, Stephen T.</creatorcontrib><creatorcontrib>Raleigh, David R.</creatorcontrib><creatorcontrib>Klisch, Tiemo J.</creatorcontrib><creatorcontrib>Harmanci, Arif O.</creatorcontrib><creatorcontrib>Patel, Akash J.</creatorcontrib><creatorcontrib>Harmanci, Akdes Serin</creatorcontrib><title>Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data</title><title>Journal of neuro-oncology</title><addtitle>J Neurooncol</addtitle><addtitle>J Neurooncol</addtitle><description>Purpose Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies. Methods Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk ( n  = 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model. Results While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on n  = 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data ( n  = 711 samples). Conclusion Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Copy number</subject><subject>Glioma</subject><subject>Glioma cells</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Meningioma</subject><subject>Neurology</subject><subject>Next-generation sequencing</subject><subject>Oncology</subject><subject>Precision medicine</subject><subject>Transcriptomics</subject><issn>0167-594X</issn><issn>1573-7373</issn><issn>1573-7373</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvLH-CALHHhYmpn_BEfq6pQpBWVUA-9WbYzXrJkk8VOKpVfj5ctH-LAxSPZz7zveF5CXgn-TnBuzosQXHPGG8m4NIIz_YSshDLADBh4SlZcaMOUlXcn5EUpW84rBuI5OYG2FUI1sCLbNd5j9pt-3NBSjwFZxGGgBb8tOMbD9TzROPhS-vRA_djR-MVnH2fM_Xek87KbMi1L2ORp2RfajzQsw1f6-dMF-0uj87M_I8-SHwq-fKyn5Pb91e3lNVvffPh4ebFmsVF6ZqGJMknvjYoJk21jwFZDCgklYBSt7hJYqxRKG1rQrTY2AASpVQdcCjglb4-y-zxV_zK7XV8Of_IjTktxwHWjGqPBVvTNP-h2WvJYhztQVitjBVSqOVIxT6VkTG6f-53PD05wdwjCHYNwNQj3Mwina9PrR-kl7LD73fJr8xWAI1Dq07jB_Mf7P7I_AAkilFs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Shetty, Arya</creator><creator>Wang, Su</creator><creator>Khan, A. Basit</creator><creator>English, Collin W.</creator><creator>Nouri, Shervin Hosseingholi</creator><creator>Magill, Stephen T.</creator><creator>Raleigh, David R.</creator><creator>Klisch, Tiemo J.</creator><creator>Harmanci, Arif O.</creator><creator>Patel, Akash J.</creator><creator>Harmanci, Akdes Serin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240701</creationdate><title>Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data</title><author>Shetty, Arya ; Wang, Su ; Khan, A. Basit ; English, Collin W. ; Nouri, Shervin Hosseingholi ; Magill, Stephen T. ; Raleigh, David R. ; Klisch, Tiemo J. ; Harmanci, Arif O. ; Patel, Akash J. ; Harmanci, Akdes Serin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-b2c4f4aa75cfef98cbe863fbfe43ec186df39955e49b8368679b33b465d30413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Copy number</topic><topic>Glioma</topic><topic>Glioma cells</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Meningioma</topic><topic>Neurology</topic><topic>Next-generation sequencing</topic><topic>Oncology</topic><topic>Precision medicine</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shetty, Arya</creatorcontrib><creatorcontrib>Wang, Su</creatorcontrib><creatorcontrib>Khan, A. Basit</creatorcontrib><creatorcontrib>English, Collin W.</creatorcontrib><creatorcontrib>Nouri, Shervin Hosseingholi</creatorcontrib><creatorcontrib>Magill, Stephen T.</creatorcontrib><creatorcontrib>Raleigh, David R.</creatorcontrib><creatorcontrib>Klisch, Tiemo J.</creatorcontrib><creatorcontrib>Harmanci, Arif O.</creatorcontrib><creatorcontrib>Patel, Akash J.</creatorcontrib><creatorcontrib>Harmanci, Akdes Serin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuro-oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shetty, Arya</au><au>Wang, Su</au><au>Khan, A. Basit</au><au>English, Collin W.</au><au>Nouri, Shervin Hosseingholi</au><au>Magill, Stephen T.</au><au>Raleigh, David R.</au><au>Klisch, Tiemo J.</au><au>Harmanci, Arif O.</au><au>Patel, Akash J.</au><au>Harmanci, Akdes Serin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data</atitle><jtitle>Journal of neuro-oncology</jtitle><stitle>J Neurooncol</stitle><addtitle>J Neurooncol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>168</volume><issue>3</issue><spage>515</spage><epage>524</epage><pages>515-524</pages><issn>0167-594X</issn><issn>1573-7373</issn><eissn>1573-7373</eissn><abstract>Purpose Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies. Methods Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk ( n  = 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model. Results While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on n  = 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data ( n  = 711 samples). Conclusion Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38811523</pmid><doi>10.1007/s11060-024-04710-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-594X
ispartof Journal of neuro-oncology, 2024-07, Vol.168 (3), p.515-524
issn 0167-594X
1573-7373
1573-7373
language eng
recordid cdi_proquest_miscellaneous_3062527639
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Brain cancer
Cancer
Cell culture
Copy number
Glioma
Glioma cells
Medicine
Medicine & Public Health
Meningioma
Neurology
Next-generation sequencing
Oncology
Precision medicine
Transcriptomics
title Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20single-cell%20sequencing%20to%20classify%20and%20characterize%20tumor%20subgroups%20in%20bulk%20RNA-sequencing%20data&rft.jtitle=Journal%20of%20neuro-oncology&rft.au=Shetty,%20Arya&rft.date=2024-07-01&rft.volume=168&rft.issue=3&rft.spage=515&rft.epage=524&rft.pages=515-524&rft.issn=0167-594X&rft.eissn=1573-7373&rft_id=info:doi/10.1007/s11060-024-04710-6&rft_dat=%3Cproquest_cross%3E3062527639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069657913&rft_id=info:pmid/38811523&rfr_iscdi=true