Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data
Purpose Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data fro...
Gespeichert in:
Veröffentlicht in: | Journal of neuro-oncology 2024-07, Vol.168 (3), p.515-524 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 524 |
---|---|
container_issue | 3 |
container_start_page | 515 |
container_title | Journal of neuro-oncology |
container_volume | 168 |
creator | Shetty, Arya Wang, Su Khan, A. Basit English, Collin W. Nouri, Shervin Hosseingholi Magill, Stephen T. Raleigh, David R. Klisch, Tiemo J. Harmanci, Arif O. Patel, Akash J. Harmanci, Akdes Serin |
description | Purpose
Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies.
Methods
Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk (
n
= 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model.
Results
While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on
n
= 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data (
n
= 711 samples).
Conclusion
Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology. |
doi_str_mv | 10.1007/s11060-024-04710-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3062527639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062527639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-b2c4f4aa75cfef98cbe863fbfe43ec186df39955e49b8368679b33b465d30413</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvLH-CALHHhYmpn_BEfq6pQpBWVUA-9WbYzXrJkk8VOKpVfj5ctH-LAxSPZz7zveF5CXgn-TnBuzosQXHPGG8m4NIIz_YSshDLADBh4SlZcaMOUlXcn5EUpW84rBuI5OYG2FUI1sCLbNd5j9pt-3NBSjwFZxGGgBb8tOMbD9TzROPhS-vRA_djR-MVnH2fM_Xek87KbMi1L2ORp2RfajzQsw1f6-dMF-0uj87M_I8-SHwq-fKyn5Pb91e3lNVvffPh4ebFmsVF6ZqGJMknvjYoJk21jwFZDCgklYBSt7hJYqxRKG1rQrTY2AASpVQdcCjglb4-y-zxV_zK7XV8Of_IjTktxwHWjGqPBVvTNP-h2WvJYhztQVitjBVSqOVIxT6VkTG6f-53PD05wdwjCHYNwNQj3Mwina9PrR-kl7LD73fJr8xWAI1Dq07jB_Mf7P7I_AAkilFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069657913</pqid></control><display><type>article</type><title>Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shetty, Arya ; Wang, Su ; Khan, A. Basit ; English, Collin W. ; Nouri, Shervin Hosseingholi ; Magill, Stephen T. ; Raleigh, David R. ; Klisch, Tiemo J. ; Harmanci, Arif O. ; Patel, Akash J. ; Harmanci, Akdes Serin</creator><creatorcontrib>Shetty, Arya ; Wang, Su ; Khan, A. Basit ; English, Collin W. ; Nouri, Shervin Hosseingholi ; Magill, Stephen T. ; Raleigh, David R. ; Klisch, Tiemo J. ; Harmanci, Arif O. ; Patel, Akash J. ; Harmanci, Akdes Serin</creatorcontrib><description>Purpose
Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies.
Methods
Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk (
n
= 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model.
Results
While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on
n
= 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data (
n
= 711 samples).
Conclusion
Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.</description><identifier>ISSN: 0167-594X</identifier><identifier>ISSN: 1573-7373</identifier><identifier>EISSN: 1573-7373</identifier><identifier>DOI: 10.1007/s11060-024-04710-6</identifier><identifier>PMID: 38811523</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Brain cancer ; Cancer ; Cell culture ; Copy number ; Glioma ; Glioma cells ; Medicine ; Medicine & Public Health ; Meningioma ; Neurology ; Next-generation sequencing ; Oncology ; Precision medicine ; Transcriptomics</subject><ispartof>Journal of neuro-oncology, 2024-07, Vol.168 (3), p.515-524</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. corrected publication 2024</rights><rights>2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. corrected publication 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-b2c4f4aa75cfef98cbe863fbfe43ec186df39955e49b8368679b33b465d30413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11060-024-04710-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11060-024-04710-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38811523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shetty, Arya</creatorcontrib><creatorcontrib>Wang, Su</creatorcontrib><creatorcontrib>Khan, A. Basit</creatorcontrib><creatorcontrib>English, Collin W.</creatorcontrib><creatorcontrib>Nouri, Shervin Hosseingholi</creatorcontrib><creatorcontrib>Magill, Stephen T.</creatorcontrib><creatorcontrib>Raleigh, David R.</creatorcontrib><creatorcontrib>Klisch, Tiemo J.</creatorcontrib><creatorcontrib>Harmanci, Arif O.</creatorcontrib><creatorcontrib>Patel, Akash J.</creatorcontrib><creatorcontrib>Harmanci, Akdes Serin</creatorcontrib><title>Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data</title><title>Journal of neuro-oncology</title><addtitle>J Neurooncol</addtitle><addtitle>J Neurooncol</addtitle><description>Purpose
Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies.
Methods
Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk (
n
= 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model.
Results
While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on
n
= 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data (
n
= 711 samples).
Conclusion
Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain cancer</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Copy number</subject><subject>Glioma</subject><subject>Glioma cells</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Meningioma</subject><subject>Neurology</subject><subject>Next-generation sequencing</subject><subject>Oncology</subject><subject>Precision medicine</subject><subject>Transcriptomics</subject><issn>0167-594X</issn><issn>1573-7373</issn><issn>1573-7373</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EokvLH-CALHHhYmpn_BEfq6pQpBWVUA-9WbYzXrJkk8VOKpVfj5ctH-LAxSPZz7zveF5CXgn-TnBuzosQXHPGG8m4NIIz_YSshDLADBh4SlZcaMOUlXcn5EUpW84rBuI5OYG2FUI1sCLbNd5j9pt-3NBSjwFZxGGgBb8tOMbD9TzROPhS-vRA_djR-MVnH2fM_Xek87KbMi1L2ORp2RfajzQsw1f6-dMF-0uj87M_I8-SHwq-fKyn5Pb91e3lNVvffPh4ebFmsVF6ZqGJMknvjYoJk21jwFZDCgklYBSt7hJYqxRKG1rQrTY2AASpVQdcCjglb4-y-zxV_zK7XV8Of_IjTktxwHWjGqPBVvTNP-h2WvJYhztQVitjBVSqOVIxT6VkTG6f-53PD05wdwjCHYNwNQj3Mwina9PrR-kl7LD73fJr8xWAI1Dq07jB_Mf7P7I_AAkilFs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Shetty, Arya</creator><creator>Wang, Su</creator><creator>Khan, A. Basit</creator><creator>English, Collin W.</creator><creator>Nouri, Shervin Hosseingholi</creator><creator>Magill, Stephen T.</creator><creator>Raleigh, David R.</creator><creator>Klisch, Tiemo J.</creator><creator>Harmanci, Arif O.</creator><creator>Patel, Akash J.</creator><creator>Harmanci, Akdes Serin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20240701</creationdate><title>Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data</title><author>Shetty, Arya ; Wang, Su ; Khan, A. Basit ; English, Collin W. ; Nouri, Shervin Hosseingholi ; Magill, Stephen T. ; Raleigh, David R. ; Klisch, Tiemo J. ; Harmanci, Arif O. ; Patel, Akash J. ; Harmanci, Akdes Serin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-b2c4f4aa75cfef98cbe863fbfe43ec186df39955e49b8368679b33b465d30413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain cancer</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Copy number</topic><topic>Glioma</topic><topic>Glioma cells</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Meningioma</topic><topic>Neurology</topic><topic>Next-generation sequencing</topic><topic>Oncology</topic><topic>Precision medicine</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shetty, Arya</creatorcontrib><creatorcontrib>Wang, Su</creatorcontrib><creatorcontrib>Khan, A. Basit</creatorcontrib><creatorcontrib>English, Collin W.</creatorcontrib><creatorcontrib>Nouri, Shervin Hosseingholi</creatorcontrib><creatorcontrib>Magill, Stephen T.</creatorcontrib><creatorcontrib>Raleigh, David R.</creatorcontrib><creatorcontrib>Klisch, Tiemo J.</creatorcontrib><creatorcontrib>Harmanci, Arif O.</creatorcontrib><creatorcontrib>Patel, Akash J.</creatorcontrib><creatorcontrib>Harmanci, Akdes Serin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuro-oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shetty, Arya</au><au>Wang, Su</au><au>Khan, A. Basit</au><au>English, Collin W.</au><au>Nouri, Shervin Hosseingholi</au><au>Magill, Stephen T.</au><au>Raleigh, David R.</au><au>Klisch, Tiemo J.</au><au>Harmanci, Arif O.</au><au>Patel, Akash J.</au><au>Harmanci, Akdes Serin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data</atitle><jtitle>Journal of neuro-oncology</jtitle><stitle>J Neurooncol</stitle><addtitle>J Neurooncol</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>168</volume><issue>3</issue><spage>515</spage><epage>524</epage><pages>515-524</pages><issn>0167-594X</issn><issn>1573-7373</issn><eissn>1573-7373</eissn><abstract>Purpose
Accurate classification of cancer subgroups is essential for precision medicine, tailoring treatments to individual patients based on their cancer subtypes. In recent years, advances in high-throughput sequencing technologies have enabled the generation of large-scale transcriptomic data from cancer samples. These data have provided opportunities for developing computational methods that can improve cancer subtyping and enable better personalized treatment strategies.
Methods
Here in this study, we evaluated different feature selection schemes in the context of meningioma classification. To integrate interpretable features from the bulk (
n
= 77 samples) and single-cell profiling (∼ 10 K cells), we developed an algorithm named CLIPPR which combines the top-performing single-cell models, RNA-inferred copy number variation (CNV) signals, and the initial bulk model to create a meta-model.
Results
While the scheme relying solely on bulk transcriptomic data showed good classification accuracy, it exhibited confusion between malignant and benign molecular classes in approximately ∼ 8% of meningioma samples. In contrast, models trained on features learned from meningioma single-cell data accurately resolved the sub-groups confused by bulk-transcriptomic data but showed limited overall accuracy. CLIPPR showed superior overall accuracy and resolved benign-malignant confusion as validated on
n
= 789 bulk meningioma samples gathered from multiple institutions. Finally, we showed the generalizability of our algorithm using our in-house single-cell (∼ 200 K cells) and bulk TCGA glioma data (
n
= 711 samples).
Conclusion
Overall, our algorithm CLIPPR synergizes the resolution of single-cell data with the depth of bulk sequencing and enables improved cancer sub-group diagnoses and insights into their biology.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>38811523</pmid><doi>10.1007/s11060-024-04710-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-594X |
ispartof | Journal of neuro-oncology, 2024-07, Vol.168 (3), p.515-524 |
issn | 0167-594X 1573-7373 1573-7373 |
language | eng |
recordid | cdi_proquest_miscellaneous_3062527639 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Algorithms Brain cancer Cancer Cell culture Copy number Glioma Glioma cells Medicine Medicine & Public Health Meningioma Neurology Next-generation sequencing Oncology Precision medicine Transcriptomics |
title | Leveraging single-cell sequencing to classify and characterize tumor subgroups in bulk RNA-sequencing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A40%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20single-cell%20sequencing%20to%20classify%20and%20characterize%20tumor%20subgroups%20in%20bulk%20RNA-sequencing%20data&rft.jtitle=Journal%20of%20neuro-oncology&rft.au=Shetty,%20Arya&rft.date=2024-07-01&rft.volume=168&rft.issue=3&rft.spage=515&rft.epage=524&rft.pages=515-524&rft.issn=0167-594X&rft.eissn=1573-7373&rft_id=info:doi/10.1007/s11060-024-04710-6&rft_dat=%3Cproquest_cross%3E3062527639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3069657913&rft_id=info:pmid/38811523&rfr_iscdi=true |