In Situ Construction of Biphasic Boride Electrocatalysts on Dealloyed Bulk Ni–Mo Alloy as Self-Supporting Electrode for Water Splitting at High Current Density

Nickel–molybdenum–boron (Ni–Mo–B)-based catalysts with biphasic interfaces are highly advantageous in bifunctional electrocatalytic activity in alkaline water-splitting. However, it remains an ongoing challenge to obtain porous Ni–Mo alloy substrates that provide stable adhesion to catalysts, ensuri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-06, Vol.16 (22), p.28578-28589
Hauptverfasser: Yang, Guangyao, Peng, Weiliang, Chen, Zhipeng, Li, Shaobo, Han, Qiying, Hu, Renzong, Yuan, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28589
container_issue 22
container_start_page 28578
container_title ACS applied materials & interfaces
container_volume 16
creator Yang, Guangyao
Peng, Weiliang
Chen, Zhipeng
Li, Shaobo
Han, Qiying
Hu, Renzong
Yuan, Bin
description Nickel–molybdenum–boron (Ni–Mo–B)-based catalysts with biphasic interfaces are highly advantageous in bifunctional electrocatalytic activity in alkaline water-splitting. However, it remains an ongoing challenge to obtain porous Ni–Mo alloy substrates that provide stable adhesion to catalysts, ensuring the long-term performance of bifunctional self-supporting electrodes at a high current density. Herein, a porous Ni–Mo alloy substrate was effectively obtained by a cost-effective dealloying process on a commercial Ni–Mo alloy with high-energy crystal planes. Subsequently, the Mo2NiB2/Ni3B bifunctional catalyst was in situ synthesized on this substrate via boriding heat treatment, resulting in outstanding catalytic activity and stability. Density functional theory (DFT) calculations reveal that the abundant biphasic interfaces and surface-reconstructed sites of the Mo2NiB2/Ni3B catalyst can decrease the energy barriers for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Thus, the designed self-supporting electrodes show bifunctional catalytic activity with overpotentials of 151 mV for HER and 260 mV for OER at a current density of 10 mA cm–2. Markedly, the assembled water electrolyzer can be driven up to 10 mA cm–2 at 1.64 V and maintain catalytic activity at a high current density of 1000 mA cm–2 for 100 h. The new strategy is expected to provide a low-cost scheme for designing self-supporting bifunctional electrodes with high activity and excellent stability and contribute to the development of hydrogen energy technology.
doi_str_mv 10.1021/acsami.4c04157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3060750387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060750387</sourcerecordid><originalsourceid>FETCH-LOGICAL-a318t-6c599de25a723f4a2b2583de1b9e8cfe90478946916b3762f5a9eb4a589791ed3</originalsourceid><addsrcrecordid>eNqFkbtuFDEUhi1EREKgpUQuEdJsfJ0Zl9klkEgJFAuiHHk8ZxIH73jiS7Ed78AT8Go8CU52kw4hF7aOv_MV_4_QG0oWlDB6ok3UG7sQhggqm2foiCohqpZJ9vzpLcQhehnjLSE1Z0S-QIe8bVQ5zRH6fTHhtU0Zr_wUU8gmWT9hP-KlnW90tAYvfbAD4DMHJgVvdNJuG1PEBfsA2jm_hQEvs_uBP9s_P39deXx6P8Q64jW4sVrnefYh2en60VFsow_4u04Q8Hp2Nj386oTP7fUNXuUQYErFPkWbtq_QwahdhNf7-xh9-3j2dXVeXX75dLE6vaw0p22qaiOVGoBJ3TA-Cs16Jls-AO0VtGYERUTTKlErWve8qdkotYJeaNmWJCgM_Bi923nn4O8yxNRtbDTgnJ7A59hxKnlNueL8_yipSSNJSbmgix1qgo8xwNjNwW502HaUdPcNdrsGu32DZeHt3p37DQxP-GNlBXi_A8pid-tzmEoq_7L9BWLfqIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060750387</pqid></control><display><type>article</type><title>In Situ Construction of Biphasic Boride Electrocatalysts on Dealloyed Bulk Ni–Mo Alloy as Self-Supporting Electrode for Water Splitting at High Current Density</title><source>ACS Publications</source><creator>Yang, Guangyao ; Peng, Weiliang ; Chen, Zhipeng ; Li, Shaobo ; Han, Qiying ; Hu, Renzong ; Yuan, Bin</creator><creatorcontrib>Yang, Guangyao ; Peng, Weiliang ; Chen, Zhipeng ; Li, Shaobo ; Han, Qiying ; Hu, Renzong ; Yuan, Bin</creatorcontrib><description>Nickel–molybdenum–boron (Ni–Mo–B)-based catalysts with biphasic interfaces are highly advantageous in bifunctional electrocatalytic activity in alkaline water-splitting. However, it remains an ongoing challenge to obtain porous Ni–Mo alloy substrates that provide stable adhesion to catalysts, ensuring the long-term performance of bifunctional self-supporting electrodes at a high current density. Herein, a porous Ni–Mo alloy substrate was effectively obtained by a cost-effective dealloying process on a commercial Ni–Mo alloy with high-energy crystal planes. Subsequently, the Mo2NiB2/Ni3B bifunctional catalyst was in situ synthesized on this substrate via boriding heat treatment, resulting in outstanding catalytic activity and stability. Density functional theory (DFT) calculations reveal that the abundant biphasic interfaces and surface-reconstructed sites of the Mo2NiB2/Ni3B catalyst can decrease the energy barriers for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Thus, the designed self-supporting electrodes show bifunctional catalytic activity with overpotentials of 151 mV for HER and 260 mV for OER at a current density of 10 mA cm–2. Markedly, the assembled water electrolyzer can be driven up to 10 mA cm–2 at 1.64 V and maintain catalytic activity at a high current density of 1000 mA cm–2 for 100 h. The new strategy is expected to provide a low-cost scheme for designing self-supporting bifunctional electrodes with high activity and excellent stability and contribute to the development of hydrogen energy technology.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c04157</identifier><identifier>PMID: 38797977</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>adhesion ; alloys ; catalysts ; catalytic activity ; cost effectiveness ; density functional theory ; electrodes ; energy ; Energy, Environmental, and Catalysis Applications ; heat treatment ; hydrogen ; hydrogen production ; oxygen production</subject><ispartof>ACS applied materials &amp; interfaces, 2024-06, Vol.16 (22), p.28578-28589</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a318t-6c599de25a723f4a2b2583de1b9e8cfe90478946916b3762f5a9eb4a589791ed3</cites><orcidid>0000-0002-8994-6438 ; 0000-0003-1066-3265 ; 0000-0002-4021-6186</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c04157$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c04157$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38797977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Guangyao</creatorcontrib><creatorcontrib>Peng, Weiliang</creatorcontrib><creatorcontrib>Chen, Zhipeng</creatorcontrib><creatorcontrib>Li, Shaobo</creatorcontrib><creatorcontrib>Han, Qiying</creatorcontrib><creatorcontrib>Hu, Renzong</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><title>In Situ Construction of Biphasic Boride Electrocatalysts on Dealloyed Bulk Ni–Mo Alloy as Self-Supporting Electrode for Water Splitting at High Current Density</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Nickel–molybdenum–boron (Ni–Mo–B)-based catalysts with biphasic interfaces are highly advantageous in bifunctional electrocatalytic activity in alkaline water-splitting. However, it remains an ongoing challenge to obtain porous Ni–Mo alloy substrates that provide stable adhesion to catalysts, ensuring the long-term performance of bifunctional self-supporting electrodes at a high current density. Herein, a porous Ni–Mo alloy substrate was effectively obtained by a cost-effective dealloying process on a commercial Ni–Mo alloy with high-energy crystal planes. Subsequently, the Mo2NiB2/Ni3B bifunctional catalyst was in situ synthesized on this substrate via boriding heat treatment, resulting in outstanding catalytic activity and stability. Density functional theory (DFT) calculations reveal that the abundant biphasic interfaces and surface-reconstructed sites of the Mo2NiB2/Ni3B catalyst can decrease the energy barriers for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Thus, the designed self-supporting electrodes show bifunctional catalytic activity with overpotentials of 151 mV for HER and 260 mV for OER at a current density of 10 mA cm–2. Markedly, the assembled water electrolyzer can be driven up to 10 mA cm–2 at 1.64 V and maintain catalytic activity at a high current density of 1000 mA cm–2 for 100 h. The new strategy is expected to provide a low-cost scheme for designing self-supporting bifunctional electrodes with high activity and excellent stability and contribute to the development of hydrogen energy technology.</description><subject>adhesion</subject><subject>alloys</subject><subject>catalysts</subject><subject>catalytic activity</subject><subject>cost effectiveness</subject><subject>density functional theory</subject><subject>electrodes</subject><subject>energy</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>heat treatment</subject><subject>hydrogen</subject><subject>hydrogen production</subject><subject>oxygen production</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkbtuFDEUhi1EREKgpUQuEdJsfJ0Zl9klkEgJFAuiHHk8ZxIH73jiS7Ed78AT8Go8CU52kw4hF7aOv_MV_4_QG0oWlDB6ok3UG7sQhggqm2foiCohqpZJ9vzpLcQhehnjLSE1Z0S-QIe8bVQ5zRH6fTHhtU0Zr_wUU8gmWT9hP-KlnW90tAYvfbAD4DMHJgVvdNJuG1PEBfsA2jm_hQEvs_uBP9s_P39deXx6P8Q64jW4sVrnefYh2en60VFsow_4u04Q8Hp2Nj386oTP7fUNXuUQYErFPkWbtq_QwahdhNf7-xh9-3j2dXVeXX75dLE6vaw0p22qaiOVGoBJ3TA-Cs16Jls-AO0VtGYERUTTKlErWve8qdkotYJeaNmWJCgM_Bi923nn4O8yxNRtbDTgnJ7A59hxKnlNueL8_yipSSNJSbmgix1qgo8xwNjNwW502HaUdPcNdrsGu32DZeHt3p37DQxP-GNlBXi_A8pid-tzmEoq_7L9BWLfqIw</recordid><startdate>20240605</startdate><enddate>20240605</enddate><creator>Yang, Guangyao</creator><creator>Peng, Weiliang</creator><creator>Chen, Zhipeng</creator><creator>Li, Shaobo</creator><creator>Han, Qiying</creator><creator>Hu, Renzong</creator><creator>Yuan, Bin</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-8994-6438</orcidid><orcidid>https://orcid.org/0000-0003-1066-3265</orcidid><orcidid>https://orcid.org/0000-0002-4021-6186</orcidid></search><sort><creationdate>20240605</creationdate><title>In Situ Construction of Biphasic Boride Electrocatalysts on Dealloyed Bulk Ni–Mo Alloy as Self-Supporting Electrode for Water Splitting at High Current Density</title><author>Yang, Guangyao ; Peng, Weiliang ; Chen, Zhipeng ; Li, Shaobo ; Han, Qiying ; Hu, Renzong ; Yuan, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a318t-6c599de25a723f4a2b2583de1b9e8cfe90478946916b3762f5a9eb4a589791ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adhesion</topic><topic>alloys</topic><topic>catalysts</topic><topic>catalytic activity</topic><topic>cost effectiveness</topic><topic>density functional theory</topic><topic>electrodes</topic><topic>energy</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>heat treatment</topic><topic>hydrogen</topic><topic>hydrogen production</topic><topic>oxygen production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Guangyao</creatorcontrib><creatorcontrib>Peng, Weiliang</creatorcontrib><creatorcontrib>Chen, Zhipeng</creatorcontrib><creatorcontrib>Li, Shaobo</creatorcontrib><creatorcontrib>Han, Qiying</creatorcontrib><creatorcontrib>Hu, Renzong</creatorcontrib><creatorcontrib>Yuan, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Guangyao</au><au>Peng, Weiliang</au><au>Chen, Zhipeng</au><au>Li, Shaobo</au><au>Han, Qiying</au><au>Hu, Renzong</au><au>Yuan, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Construction of Biphasic Boride Electrocatalysts on Dealloyed Bulk Ni–Mo Alloy as Self-Supporting Electrode for Water Splitting at High Current Density</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-06-05</date><risdate>2024</risdate><volume>16</volume><issue>22</issue><spage>28578</spage><epage>28589</epage><pages>28578-28589</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Nickel–molybdenum–boron (Ni–Mo–B)-based catalysts with biphasic interfaces are highly advantageous in bifunctional electrocatalytic activity in alkaline water-splitting. However, it remains an ongoing challenge to obtain porous Ni–Mo alloy substrates that provide stable adhesion to catalysts, ensuring the long-term performance of bifunctional self-supporting electrodes at a high current density. Herein, a porous Ni–Mo alloy substrate was effectively obtained by a cost-effective dealloying process on a commercial Ni–Mo alloy with high-energy crystal planes. Subsequently, the Mo2NiB2/Ni3B bifunctional catalyst was in situ synthesized on this substrate via boriding heat treatment, resulting in outstanding catalytic activity and stability. Density functional theory (DFT) calculations reveal that the abundant biphasic interfaces and surface-reconstructed sites of the Mo2NiB2/Ni3B catalyst can decrease the energy barriers for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Thus, the designed self-supporting electrodes show bifunctional catalytic activity with overpotentials of 151 mV for HER and 260 mV for OER at a current density of 10 mA cm–2. Markedly, the assembled water electrolyzer can be driven up to 10 mA cm–2 at 1.64 V and maintain catalytic activity at a high current density of 1000 mA cm–2 for 100 h. The new strategy is expected to provide a low-cost scheme for designing self-supporting bifunctional electrodes with high activity and excellent stability and contribute to the development of hydrogen energy technology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38797977</pmid><doi>10.1021/acsami.4c04157</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8994-6438</orcidid><orcidid>https://orcid.org/0000-0003-1066-3265</orcidid><orcidid>https://orcid.org/0000-0002-4021-6186</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-06, Vol.16 (22), p.28578-28589
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3060750387
source ACS Publications
subjects adhesion
alloys
catalysts
catalytic activity
cost effectiveness
density functional theory
electrodes
energy
Energy, Environmental, and Catalysis Applications
heat treatment
hydrogen
hydrogen production
oxygen production
title In Situ Construction of Biphasic Boride Electrocatalysts on Dealloyed Bulk Ni–Mo Alloy as Self-Supporting Electrode for Water Splitting at High Current Density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Construction%20of%20Biphasic%20Boride%20Electrocatalysts%20on%20Dealloyed%20Bulk%20Ni%E2%80%93Mo%20Alloy%20as%20Self-Supporting%20Electrode%20for%20Water%20Splitting%20at%20High%20Current%20Density&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yang,%20Guangyao&rft.date=2024-06-05&rft.volume=16&rft.issue=22&rft.spage=28578&rft.epage=28589&rft.pages=28578-28589&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c04157&rft_dat=%3Cproquest_cross%3E3060750387%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060750387&rft_id=info:pmid/38797977&rfr_iscdi=true